Math 170S
Lecture Notes Section 8.2 *†
Tests about two means

Instructor: Swee Hong Chan

NOTE: Materials that appear in the textbook but do not appear in the lecture notes might still be tested.
Please send me an email if you find typos.

*Version date: Wednesday 18th November, 2020, 13:23.
†This notes is based on Hanbaek Lyu’s and Liza Rebrova’s notes from the previous quarter, and I would like to thank them for their generosity. “Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)”.
1 Setting: dependent X and Y

Object: X and Y are (possibly dependent) random variables with unknown mean μ_X and μ_Y, and D is the difference $D := X - Y$.

Hypotheses:

- **Null Hypothesis** H_0: μ_X is equal to μ_Y. Equivalently $\mu_D = 0$.

- **Alternative Hypothesis** H_1: The alternative hypothesis is one of these three forms:

 (a) μ_X is strictly greater than μ_Y. Equivalently $\mu_D > 0$;

 (b) μ_X is strictly smaller than μ_Y. Equivalently $\mu_D < 0$;

 (c) μ_X is not equal to μ_Y. Equivalently $\mu_D \neq 0$.

The strategy is to apply tests for one mean from Section 8.1 to D.

Input: Random samples X_1, \ldots, X_n for X, random samples Y_1, \ldots, Y_n for Y, and significance level α.

Methodology:

- Compute $\overline{D} := \frac{(X_1 - Y_1) + \ldots + (X_n - Y_n)}{n}$
- Compute the critical region that depends on α; or
- Compute the p-value that depends on \overline{D}.

Output:

- Reject the hypothesis if \overline{D} is contained in the critical region. Equivalently, reject the hypothesis if the p-value is smaller than α.
- Do not reject the hypothesis (i.e., test is inconclusive) otherwise.
2 Example: dependent X, Y

Twenty-four students were subjected to a brainwashing program to increase their midterm scores.

- The null hypothesis is that the brainwashing program does nothing to their midterm score;

- The alternative hypothesis is that the brainwashing program increases their midterm score.

Let X be the midterm score before the program, and Y be the midterm score after the program.

Let $D = X - Y$ be a normal random variable with unknown mean and unknown variance.

Suppose that sample mean \bar{D} is -0.079 and sample standard deviation s_D is 0.255.

Should we reject the null hypothesis with $\alpha = 0.05$?
3 Answer: dependent X and Y

This is the scenario of **normal** random variable with **unknown mean** and **unknown variance**.

From Section 8.1,

$$t_{\alpha}(n - 1)\frac{s}{\sqrt{n}} = t_{0.05}(23)\frac{0.255}{\sqrt{24}} = (1.714)(\frac{0.255}{\sqrt{24}}) \approx 0.09.$$

So the critical region is

$$\left(-\infty, 0 - t_{\alpha}(n - 1)\frac{s}{\sqrt{n}}\right] = \left(-\infty, -0.09\right].$$

Since the sample mean $\bar{D} = -0.079$ is not contained in the critical region, the test is inconclusive.
4 Setting: independent X and Y with known variances

Object: X and Y are independent random variables with unknown mean μ_X and μ_Y but with known variances σ^2_X and σ^2_Y.

Hypotheses:

- Null Hypothesis H_0: μ_X is equal to μ_Y.

- Alternative Hypothesis H_1: It takes one of these three forms:

 (a) μ_X is strictly greater than μ_Y;

 (b) μ_X is strictly smaller than μ_Y;

 (c) μ_X is not equal to μ_Y.

Input: Significance level α, random samples X_1, \ldots, X_n for X, random samples Y_1, \ldots, Y_m for Y. Note that n is not necessarily equal to m.

Methodology:

- Compute the critical region that depends on α; or
- Compute the p-value that depends on \bar{X} and \bar{Y}.

Output:

- Reject the hypothesis if $\bar{X} - \bar{Y}$ is contained in the critical region. Equivalently, reject the hypothesis if the p-value is smaller than α.
- Do not reject the hypothesis (i.e., test is inconclusive) otherwise.
5 Theorem: independent X and Y with known variances

Theorem 1.

• For the case $\mu_X > \mu_Y$,

\[
\text{critical region} = \left[z_{\alpha} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}, \infty \right),
\]

\[
p-value = 1 - \Phi \left(\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \right).
\]

• For the case $\mu_X < \mu_Y$,

\[
\text{critical region} = \left(-\infty, -z_{\alpha} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} \right),
\]

\[
p-value = \Phi \left(\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \right).
\]
• For the case $\mu_X \neq \mu_Y$,

\[
\text{critical region} = \left(-\infty , -z_{\alpha/2} \sqrt{\frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}} \right) \cup \left[z_{\alpha/2} \sqrt{\frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}}, \infty \right),
\]

\[
p-value = 2 \left[1 - \Phi \left(\frac{|\bar{X} - \bar{Y}|}{\sqrt{\frac{\sigma^2_X}{n} + \frac{\sigma^2_Y}{m}}} \right) \right].
\]
6 Example: independent X, Y with known variances

Let X be the midterm grade of a random student from Section 1, and let Y be the midterm grade of a random student from Section 2.

- The null hypothesis is that $\mu_X = \mu_Y$;

- The alternative hypothesis is that $\mu_X < \mu_Y$.

Let X be a normal random variable with standard deviation $\sigma_X = 1.08$, and let Y be a normal random variable with standard deviation $\sigma_Y = 1.55$.

Suppose that X has sample mean $\bar{X} = 67.01$ with $n = 50$, and Y has sample mean 68.41 with $m = 40$ students. Should we reject the null hypothesis at an $\alpha = 0.01$ significance level?
7 Answer: independent X, Y with known variances

This is case (b), so we have

$$z_\alpha \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} = z_{0.01} \sqrt{\frac{(1.08)^2}{50} + \frac{(1.55)^2}{40}} = (2.326) \sqrt{\frac{(1.08)^2}{50} + \frac{(1.55)^2}{40}} \approx 0.672$$

So the critical region is

$$\left(-\infty, 0 - z_\alpha \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} \right] = \left(-\infty, -0.672 \right].$$

Since $\overline{X} - \overline{Y} = 67.01 - 68.41 = -1.4$ is contained in the critical region, we reject the null hypothesis.
The case of independent X and Y with unknown variances

Object: X and Y are independent random variables with unknown mean μ_X and μ_Y and unknown but equal variances σ^2.

Hypotheses:

- **Null Hypothesis** H_0: μ_X is equal to μ_Y.

- **Alternative Hypothesis** H_1: The alternative hypothesis can take one of these three forms:

 (a) μ_X is strictly greater than μ_Y;

 (b) μ_X is strictly smaller than μ_Y;

 (c) μ_X is not equal to μ_Y.

Input: Significance level α, random samples X_1, \ldots, X_n for X, random samples Y_1, \ldots, Y_m for Y. Note that n is not necessarily equal to m.

Methodology:

- Compute the sample variance s^2_X and s^2_Y.
- Compute the pulled estimator
 $$s_P := \sqrt{\frac{(n - 1)s^2_X + (m - 1)s^2_Y}{n + m - 2}}.$$
- Compute the critical region that depends on α.

Output:

- Reject the hypothesis if $\bar{X} - \bar{Y}$ is contained in the critical region. Equivalently, reject the hypothesis if the p-value is smaller than α.
- Do not reject the hypothesis otherwise.
Theorem 2. If \(n + m - 2 > 30 \), then use the following formula:

- For the case \(\mu_X > \mu_Y \),

\[
\text{critical region} = \left[z_\alpha \, s_P \sqrt{\frac{1}{n} + \frac{1}{m}} , \, \infty \right),
\]

- For the case \(\mu_X < \mu_Y \),

\[
\text{critical region} = \left(-\infty , \, -z_\alpha \, s_P \sqrt{\frac{1}{n} + \frac{1}{m}} \right],
\]

- For the case \(\mu_X \neq \mu_Y \),

\[
\text{critical region} = \left(-\infty , \, -z_{\alpha/2} \, s_P \sqrt{\frac{1}{n} + \frac{1}{m}} \right] \cup \left[z_{\alpha/2} \, s_P \sqrt{\frac{1}{n} + \frac{1}{m}} , \, \infty \right),
\]
If \(n + m - 2 \leq 30 \), use the following formula:

- **For the case** \(\mu_X > \mu_Y \),

 \[
 \text{critical region} = \left[t_\alpha(n + m - 2)s_P \sqrt{\frac{1}{n} + \frac{1}{m}}, \infty \right).
 \]

- **For the case** \(\mu_X < \mu_Y \),

 \[
 \text{critical region} = \left(-\infty, -t_\alpha(n + m - 2)s_P \sqrt{\frac{1}{n} + \frac{1}{m}} \right].
 \]

- **For the case** \(\mu_X \neq \mu_Y \),

 \[
 \text{critical region} = \left(-\infty, -t_{\alpha/2}(n + m - 2)s_P \sqrt{\frac{1}{n} + \frac{1}{m}} \right]\]
 \[
 \left[t_{\alpha/2}(n + m - 2)s_P \sqrt{\frac{1}{n} + \frac{1}{m}}, \infty \right).
 \]
9 Example: independent X and Y with unknown variances

Let X be the net worth of a random citizen in Atlantis, and let Y be the net worth of a random citizen in Shangrila.

- The null hypothesis is that $\mu_X = \mu_Y$;
- The alternative hypothesis is that $\mu_X \neq \mu_Y$.

Suppose that X and Y are two **normal** random variable with **same unknown variance**. Suppose that

- X has sample mean $\overline{X} = 1076.75$, sample variance $s_X^2 = 29.30$ with $n = 12$ citizens;

- Y has sample mean $\overline{Y} = 1072.33$, sample variance $s_Y^2 = 26.24$ with $m = 12$ citizens.

Should we reject the null hypothesis at an $\alpha = 0.1$ significance level?
10 Answer: independent X and Y with unknown variances

This is case (c), so we have

$$s_P = \sqrt{\frac{(n - 1)s_X^2 + (m - 1)s_Y^2}{n + m - 2}} = \sqrt{\frac{(12 - 1)(29.30) + (12 - 1)(26.24)}{12 + 12 - 2}} = 5.267,$$

which gives us

$$t_{\alpha/2}(n + m - 2)s_P \sqrt{\frac{1}{n} + \frac{1}{m}} = (1.717)(5.267)\sqrt{\frac{1}{12} + \frac{1}{12}} = 3.69.$$

So the critical region is

$$\left(-\infty, -3.69 \right] \cup \left[3.69, \infty \right)$$

Since $\bar{X} - \bar{Y} = 1076.75 - 1072.33 = 4.42$ is contained in the critical region, we reject the null hypothesis.