NOTE: The notes is a summary for materials discussed in the class and is not supposed to substitute the textbook. Please send me an email if you find typos.

†This notes is based on Hanbaek Lyu’s and Liza Rebrova’s notes from the previous quarter, and I would like to thank them for their generosity. “Nanos gigantum humeris insidentes (I am but a dwarf standing on the shoulders of giants)”.
1 Linear regression example

We list the average age of people infected, and killed by COVID-19 in fictional countries:

1. Atlantis, average age: 25, fatality rate: 0.35;

2. Avalon, average age: 47, fatality rate: 0.57;

3. Lemuria, average age: 54, fatality rate: 0.64;

4. Shangri-la, average age: 72, fatality rate: 0.82;

5. Tartarus, average age: 90, fatality rate: 1.
Let x_1, \ldots, x_5 be the average age of the infectees in those 5 countries.

Let y_1, \ldots, y_5 be the corresponding fatality rate.

![Figure 1: The plot of the average age of people infected by COVID-19 (the x-axes) and the corresponding fatality rate (y-axes).](image)

From the figure, one predicts the relationship between x_i and y_i is

$$y_i = 0.1 + 0.01x_i.$$

We would like to do the same thing for general data.
2 Linear regression

Suppose that X and Y are two unknown dependent random variables, and we want to model their relationship. We do it as follows:

- We perform n experiments to get n random samples, $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

- The \textbf{linear regression} is the prediction that

$$Y = \alpha + \beta X + \epsilon, \quad (1)$$

where α and β are constants, and ϵ is a normal $N(0, \sigma^2)$ random variable independent from X.
This prediction means that we expect Y and X to have an almost linear relationship.

The normal random variable $\epsilon \sim N(0, \sigma^2)$ is the Gaussian noise, which emulates the (unpredictable yet unavoidable) error made by measurement tools.

Finally, use MLE to guess $\hat{\alpha}, \hat{\beta}, \hat{\sigma}^2$.
3 Linear regression: problems

- **Assumption** Unknown random variables X and Y that obeys a linear relationship.

- **Input:** Samples $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

- **Problem:** Find $\hat{\alpha}, \hat{\beta}, \hat{\sigma}^2$ that best estimates

 $$Y = \alpha + \beta X + \epsilon, \quad \epsilon \sim N(0, \sigma^2).$$

- **Method:** Use MLE to estimate $\hat{\alpha}, \hat{\beta}, \hat{\sigma}^2$.

Computing the MLE for $\hat{\alpha}, \hat{\beta}, \hat{\sigma}^2$ is not hard, but can be time-consuming. Therefore, we provide you the following formulas for $\hat{\alpha}, \hat{\beta}, \hat{\sigma}^2$.

4 Formulas for $\hat{\alpha}, \hat{\beta}, \hat{\sigma}^2$

Theorem 1. the MLEs $\hat{\alpha}, \hat{\beta}, \hat{\sigma}^2$ are given by

$$\hat{\beta} = \frac{E - \frac{AB}{n}}{C - \frac{A^2}{n}}; \quad \hat{\alpha} = \frac{B}{n} - \hat{\beta} \frac{A}{n};$$

$$\hat{\sigma}^2 = \frac{D}{n} - \left(\frac{B}{n}\right)^2 - \hat{\beta} \frac{E}{n} + \hat{\beta} \frac{AB}{n^2},$$

where

$$A := \sum_{i=1}^{n} x_i = x_1 + \ldots + x_n;$$

$$B := \sum_{i=1}^{n} y_i = y_1 + \ldots + y_n;$$

$$C := \sum_{i=1}^{n} x_i^2 = x_1^2 + \ldots + x_n^2;$$

$$D := \sum_{i=1}^{n} y_i^2 = y_1^2 + \ldots + y_n^2;$$

$$E := \sum_{i=1}^{n} x_i y_i = x_1 y_1 + \ldots + x_n y_n.$$
Remark 2. Note that the constant α in our notes is presented as α_1 in the textbook, which explains why the formula for $\hat{\alpha}$ in our theorem is off from the formula in textbook by a positive constant.
5 Example: linear regression

Let x_1, \ldots, x_n be the midterm score of 10 students in a fictional statistics class:

$$70 \ 74 \ 72 \ 68 \ 58 \ 54 \ 82 \ 64 \ 80 \ 61.$$

Let y_1, \ldots, y_n be the final score of the 10 students:

$$77 \ 94 \ 88 \ 80 \ 71 \ 76 \ 88 \ 80 \ 90 \ 69.$$
The key values A, B, C, D, E are given by

$$A = \sum_{i=1}^{n} x_i = 70 + 74 + 72 + 68 + 58 + 54 + 82 + 64 + 80 + 61$$

$$= 683;$$

$$B = \sum_{i=1}^{n} y_i = 77 + 94 + 88 + 80 + 71 + 76 + 88 + 80 + 90 + 69$$

$$= 813;$$

$$C = \sum_{i=1}^{n} x_i^2 = 70^2 + 74^2 + 72^2 + 68^2 + 58^2 + 54^2 + 82^2 + 64^2 + 80^2 + 61^2$$

$$= 47,405;$$

$$D = \sum_{i=1}^{n} y_i^2 = 77^2 + 94^2 + 88^2 + 80^2 + 71^2 + 76^2 + 88^2 + 80^2 + 90^2 + 69^2$$

$$= 66,731;$$
\[E = \sum_{i=1}^{n} x_i y_i \]

\[= (70)(77) + (74)(94) + (72)(88) + (68)(80) + (58)(71) + (54)(76) + (82)(88) + (64)(80) + (80)(90) + (61)(69) \]

\[= 56,089; \]

The MLEs are then given by

\[\hat{\beta} = \frac{E - \frac{AB}{n}}{C - \frac{A^2}{n}} = \frac{56,089 - (683)(813)/10}{47,405 - (683)(683)/10} = 0.742. \]

\[\hat{\alpha} = \frac{B}{n} - \hat{\beta} \frac{A}{n} = 813/10 - (0.742)(683/10) = 30.6214. \]

\[\hat{\sigma}^2 = \frac{D}{n} - \left(\frac{B}{n} \right)^2 - \hat{\beta} \frac{E}{n} + \hat{\beta} \frac{AB}{n^2} \]

\[= 66,731/10 - (813/10)^2 - (0.742)(56,089)/10 + (0.742)(683) \]

\[= 21.77638. \]