NOTE: The notes is a summary for materials discussed in the class and is not supposed to substitute the textbook. Materials that appear in the textbook but do not appear in the lecture notes might still be tested. Please send me an email if you find typos.
1 Ordered statistics (deterministic)

Let x_1, \ldots, x_n be unsorted real numbers (not necessarily distinct). Recall that the ordered statistics are

\begin{align*}
y_1 &:= \text{smallest of } x_1, x_2, \ldots, x_n; \\
y_2 &:= \text{second smallest of } x_1, x_2, \ldots, x_n; \\
& \vdots \\
y_n &:= \text{largest of } x_1, x_2, \ldots, x_n.
\end{align*}
2 Ordered statistics (random)

Let X_1, \ldots, X_n be random numbers now. The ordered statistics are

\[
Y_1 := \text{smallest of } X_1, X_2, \ldots, X_n;
\]
\[
Y_2 := \text{second smallest of } X_1, X_2, \ldots, X_n;
\]
\[
\vdots
\]
\[
Y_n := \text{largest of } X_1, X_2, \ldots, X_n.
\]

We call Y_k the \textbf{k-th order statistic} of X_1, \ldots, X_n.

Note that Y_k are all random numbers since X_1, \ldots, X_n are random numbers.
3 Ordered statistics: Example

Let X_1 and X_2 be two independent Bernoulli random variables with success probability $\frac{1}{2}$,

$$P[X_i = 0] = P[X_i = 1] = \frac{1}{2}.\]

There are four possibilities, each with equal probability:

$X_1 = X_2 = 0$, which implies $Y_1 = Y_2 = 0$;

$X_1 = 0, X_2 = 1$, which implies $Y_1 = 0, Y_2 = 1$;

$X_1 = 1, X_2 = 0$, which implies $Y_1 = 0, Y_2 = 1$;

$X_1 = X_2 = 1$, which implies $Y_1 = Y_2 = 1$;
In conclusion, we Y_1 and Y_2 have distribution

\[P[Y_1 = 0] = \frac{3}{4}; \quad P[Y_1 = 1] = \frac{1}{4}; \]
\[P[Y_2 = 0] = \frac{1}{4}; \quad P[Y_2 = 1] = \frac{3}{4}. \]

Note that Y_1 and Y_2 are NOT independent.
4 Cumulative distributive function

Recall that the cumulative distributive function (cdf) of X is the function $F_X : \mathbb{R} \to [0, 1]^1$

$$F_X(x) := P[X \leq x] \quad \text{for all real number } x.$$

We now compute the cdf of Y_1, \ldots, Y_n.

1This means that F_X is a function that maps real numbers to another real number that is between 0 and 1.
5 Cdf of Y_n

Lemma 1. Let X_1, \ldots, X_n be independent, identical random variables. Then, for any real number y,

$$P[Y_n \leq y] = (P[X_1 \leq y])^n.$$

Proof. We have (BT)

$$P[Y_n \leq y] = P[X_1 \leq y, X_2 \leq y, \ldots, X_n \leq y]$$

$$= P[X_1 \leq y] P[X_2 \leq y] \cdots P[X_n \leq y]$$

$$= P[X_1 \leq y] P[X_1 \leq y] \cdots P[X_1 \leq y]$$

$$= (P[X_1 \leq y])^n,$$

as desired. \qed
6 Cdf of Y_1

Lemma 2. Let X_1, \ldots, X_n be independent, identical random variables. Then, for any real number y,

$$P[Y_1 \leq y] = 1 - (P[X_1 > y])^n.$$

Proof. The proof is (almost) identical to the one in Lemma 1 and thus is left as an exercise\(^2\). \qed

\(^2\)When I was a student I had a (misguided) view that it is unforgivable for the instructor to make notes with proofs left as exercises. It was only after I become older that I realize it is important for you to do these calculations yourself as part of the learning experience, and there are no shortcuts for this.
7 Probability density function

Let X be a continuous random variable. The **probability density function (pdf)** of X is the derivative of cdf,

$$f_X(x) := \frac{\partial}{\partial x} F_X(x) \quad \text{for all real number } x.$$

Note that the pdf and cdf satisfies

$$F_X(x) := \int_{-\infty}^{x} f_X(t) \, dt \quad \text{for all real number } x.$$
8 Pdf of ordered statistics: Example

Let X_1, X_2, X_3 be independent, uniform random variables on $[0, 1]$, (BT)

$$f_{X_i}(x) = \begin{cases}
1 & \text{if } 0 \leq x \leq 1; \\
0 & \text{otherwise.}
\end{cases}$$

We now compute the pdf and cdf of Y_1, \ldots, Y_3.

First note that

$$P[Y_i \leq y] = \begin{cases}
0 & \text{if } y \leq 0; \\
1 & \text{if } y \geq 1;
\end{cases}$$

$$f_{Y_i}(y) = 0 \quad \text{if } y \leq 0 \text{ or } y \geq 1.$$

So we are left with the case $0 \leq y \leq 1$.

10
The cdf of Y_3 is equal to, for any $y \in [0, 1]$, (BT)

$$F_{Y_3}(y) = (P[X_1 \leq y])^3 \quad (\text{by Lemma 1})$$

$$= \left(\int_0^y 1 \, dx \right)^3 = y^3.$$

The pdf of Y_3 is then equal to, for any $y \in [0, 1]$,

$$f_{Y_3}(y) = \frac{\partial}{\partial y} F_{Y_3}(y) = \frac{\partial}{\partial y} y^3 = 3y^2.$$
The cdf of Y_1 is equal to, for any $y \in [0, 1]$, (BT)

$$F_{Y_1}(y) = 1 - \left(P[X_1 > y] \right)^3$$

(by Lemma 2)

$$= 1 - \left(\int_y^1 1 \, dx \right)^3$$

$$= 1 - (1 - y)^3 = 3y - 3y^2 + y^3.$$

The pdf of Y_1 is then equal to, for any $y \in [0, 1]$,

$$f_{Y_1}(y) = 3 - 6y + 3y^2.$$
We now compute the pdf and cdf of Y_2 for $y \in [0, 1]$. For Y_2 (which is the second smallest of X_1, X_2, X_3) to be smaller than y, at least two of X_1, X_2, X_3 are smaller than y. There are three possibilities

- X_1 and X_2 are smaller than y; or
- X_1 and X_3 are smaller than y; or
- X_2 and X_3 are smaller than y;

These three events are overlapping when all X_1, X_2, X_3 are smaller than y.
This implies that (BT)

\[F_{Y_2}(y) = P[Y_2 \leq y] \]

\[= P[X_1 \leq y, X_2 \leq y] + P[X_1 \leq y, X_3 \leq y] + P[X_2 \leq y, X_3 \leq y] - 2P[X_1 \leq y, X_2 \leq y, X_3 \leq y] \]

\[= P[X_1 \leq y]P[X_2 \leq y] + P[X_1 \leq y]P[X_3 \leq y] + P[X_2 \leq y]P[X_3 \leq y] - 2P[X_1 \leq y]P[X_2 \leq y]P[X_3 \leq y] \]

\[= y \times y + y \times y + y \times y - 2y \times y \times y \]

\[= 3y^2 - 2y^3. \]

The pdf of \(Y_2 \) is thus equal to

\[f_{Y_2}(y) = 6y - 6y^2. \]
9 Pdf of ordered statistics

Theorem 3. Let \(X_1, \ldots, X_n \) be independent, identical continuous random variables. Then the pdf of \(Y_k \) (for \(1 \leq k \leq n \)) is equal to

\[
f_{Y_k}(y) = \frac{n!}{(k-1)!(n-k)!} \left[F_{X_1}(y) \right]^{k-1} \left[1 - F_{X_1}(y) \right]^{n-k} f_{X_1}(y),
\]

where \(n! := 1 \times 2 \times 3 \times \ldots \times n \) is the product of the first \(n \) positive integers.
Chapter 10 Checking for normal random variables

Suppose for an unknown random variable X, how to check if X is a normal random variable?

- If n is large, you can draw histogram or stem-and-leaves diagram, and check if you see a bell curve;

- If n is small, you can draw the q-q plot and check if you see a straight line.
We now learn how to draw the q-q plot.

Suppose that we have the following samples:

\[
\begin{array}{cccccccccc}
1.24 & 1.36 & 1.28 & 1.31 & 1.35 & 1.20 & 1.39 & 1.35 & 1.41 & 1.31 \\
1.28 & 1.26 & 1.37 & 1.49 & 1.32 & 1.40 & 1.33 & 1.28 & 1.25 & 1.39 \\
1.38 & 1.34 & 1.40 & 1.27 & 1.33 & 1.36 & 1.43 & 1.33 & 1.29 & 1.34 \\
\end{array}
\]

Figure 1: Sample of size \(n = 30 \) of a certain unknown random variable \(X \), taken from the textbook.

(1 minute pause, open textbook page 262)
<table>
<thead>
<tr>
<th>k</th>
<th>Diameters in mm (x)</th>
<th>$p = k/31$</th>
<th>z_{1-p}</th>
<th>k</th>
<th>Diameters in mm (x)</th>
<th>$p = k/31$</th>
<th>z_{1-p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.20</td>
<td>0.0323</td>
<td>-1.85</td>
<td>16</td>
<td>1.34</td>
<td>0.5161</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>1.24</td>
<td>0.0645</td>
<td>-1.52</td>
<td>17</td>
<td>1.34</td>
<td>0.5484</td>
<td>0.12</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>0.0968</td>
<td>-1.30</td>
<td>18</td>
<td>1.35</td>
<td>0.5806</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>1.26</td>
<td>0.1290</td>
<td>-1.13</td>
<td>19</td>
<td>1.35</td>
<td>0.6129</td>
<td>0.29</td>
</tr>
<tr>
<td>5</td>
<td>1.27</td>
<td>0.1613</td>
<td>-0.99</td>
<td>20</td>
<td>1.36</td>
<td>0.6452</td>
<td>0.37</td>
</tr>
<tr>
<td>6</td>
<td>1.28</td>
<td>0.1935</td>
<td>-0.86</td>
<td>21</td>
<td>1.36</td>
<td>0.6774</td>
<td>0.46</td>
</tr>
<tr>
<td>7</td>
<td>1.28</td>
<td>0.2258</td>
<td>-0.75</td>
<td>22</td>
<td>1.37</td>
<td>0.7097</td>
<td>0.55</td>
</tr>
<tr>
<td>8</td>
<td>1.28</td>
<td>0.2581</td>
<td>-0.65</td>
<td>23</td>
<td>1.38</td>
<td>0.7419</td>
<td>0.65</td>
</tr>
<tr>
<td>9</td>
<td>1.29</td>
<td>0.2903</td>
<td>-0.55</td>
<td>24</td>
<td>1.39</td>
<td>0.7742</td>
<td>0.75</td>
</tr>
<tr>
<td>10</td>
<td>1.31</td>
<td>0.3226</td>
<td>-0.46</td>
<td>25</td>
<td>1.39</td>
<td>0.8065</td>
<td>0.86</td>
</tr>
<tr>
<td>11</td>
<td>1.31</td>
<td>0.3548</td>
<td>-0.37</td>
<td>26</td>
<td>1.40</td>
<td>0.8387</td>
<td>0.99</td>
</tr>
<tr>
<td>12</td>
<td>1.32</td>
<td>0.3871</td>
<td>-0.29</td>
<td>27</td>
<td>1.40</td>
<td>0.8710</td>
<td>1.13</td>
</tr>
<tr>
<td>13</td>
<td>1.33</td>
<td>0.4194</td>
<td>-0.20</td>
<td>28</td>
<td>1.41</td>
<td>0.9032</td>
<td>1.30</td>
</tr>
<tr>
<td>14</td>
<td>1.33</td>
<td>0.4516</td>
<td>-0.12</td>
<td>29</td>
<td>1.43</td>
<td>0.9355</td>
<td>1.52</td>
</tr>
<tr>
<td>15</td>
<td>1.33</td>
<td>0.4839</td>
<td>-0.04</td>
<td>30</td>
<td>1.49</td>
<td>0.9677</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Figure 2: Table of samples, ordered from smallest to largest, with corresponding values of p and z_{1-p}.
Figure 3: The q-q plot for the example. The x-axes are indexed by values of y_k, and the y-axes are indexed by values of z_{1-p_k}. The 30 black dots are the plot of (y_k, z_{1-p_k}), and the straight line is a line that “best fit” those 30 dots.
Here is how to draw the q-q plot:

1. Compute the order statistics $y_1 \leq y_2 \leq \ldots \leq y_n$.
 That is, order the samples from smallest to largest.

2. Write $p_1, p_2, \ldots p_n$, where $p_k := \frac{k}{n+1}$.

3. Compute $z_{1-p_1}, z_{1-p_2}, \ldots, z_{1-p_n}$, which can be found
 from Table Va and Vb of the textbook Appendix C.
 This number z_α is the real number such that

 $P(Z > z_\alpha) = \alpha,$

 where Z is the standard normal random variable
 (mean 0 and variance 1).
4. Plot n dots in the plane, (y_1, z_1-p_1), (y_2, z_1-p_2), \ldots, (y_n, z_1-p_n).

5. Squint your eyes, and try to see if these points form a straight line. Later in Section 6.5, we will learn linear regression to draw this line.