Note: Homework will not be collected, but the question for Quiz 2 might be picked from the homework questions.

1. Let X be the binomial random variable with parameter n and p, where n is known but p is not. Let x_1, \ldots, x_n be sample values for X.

 (a) Compute the log likelihood function $\ell(p)$ for X.

 (b) Show that the MLE for p is $\frac{x_1 + \ldots + x_n}{n}$.

2. Let X be the geometric random variable with unknown parameter p. Let x_1, \ldots, x_n be sample values for X.

 (a) Compute the log likelihood function $\ell(p)$ for X.

 (b) Show that the MLE for p is $\frac{n}{x_1 + \ldots + x_n}$.

3. Let X be the Poisson random variable with unknown parameter λ. Let x_1, \ldots, x_n be sample values for X.

 (a) Compute the log likelihood function $\ell(\lambda)$ for X.

 (b) Show that the MLE for λ is $\frac{x_1 + \ldots + x_n}{n}$.

4. Let X be the uniform random variable on the interval $[0, \theta]$ with unknown parameter θ.

 (a) Let x_1, \ldots, x_n be sample values for X. Show that the MLE for θ is given by

 $\hat{\theta}(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n)$.

 (b) Show that $\hat{\theta}$ is a biased estimator for θ.

5. Show that maximum likelihood estimation and method of moments give the same estimators for $N(\mu, \sigma^2)$.

6. Solve Problem 6.4-7 in the textbook.

7. Solve Problem 6.4-17 in the textbook.