Stable Homotopy Refinements
and Khovanov homology
Robert Lipshitz! and Sucharit Sarkar?

International Congress of Mathematics
Rio de Janeiro, Brazil, August 2018

Special thanks to our collaborator Tyler Lawson,
whose perspective is reflected throughout.

1 RL was supported by NSF CAREER Grant DMS-1642067 and NSF FRG Grant DMS-1560783
2SS was supported by NSF CAREER Grant DMS-1643401 and NSF FRG Grant DMS-1563615



Part 1: Stable homotopy refinements



Part 1: Stable homotopy refinements

e Morse homology



Part 1: Stable homotopy refinements

e Morse homology

e Floer homology and categorification



Part 1: Stable homotopy refinements

e Morse homology
e Floer homology and categorification

e The Cohen-Jones-Segal question



Part 1: Stable homotopy refinements

e Morse homology
e Floer homology and categorification
e The Cohen-Jones-Segal question

e A theorem of Carlsson’s



Part 1: Stable homotopy refinements

e Morse homology

e Floer homology and categorification
e The Cohen-Jones-Segal question

e A theorem of Carlsson’s

e Applications of spatial refinements



Part 1: Stable homotopy refinements

e Morse homology

e Floer homology and categorification
e The Cohen-Jones-Segal question

e A theorem of Carlsson’s

e Applications of spatial refinements

e General strategies for spatial refinements



Part 1: Stable homotopy refinements

e Morse homology

e Floer homology and categorification

e The Cohen-Jones-Segal question

e A theorem of Carlsson's

e Applications of spatial refinements

e General strategies for spatial refinements

e Flow categories and realization



Morse homology
c d




Morse homology x(My= 3 (—1)m)
cC d peCrit(f)

_ (_1)ind(a) + (_1)ind(b) + (_1)ind(c) + (_1)ind(d)

=1+(-1)+1+1=2.




Morse homology
C

(M) = 3 (1)

peCrit(f)
_ (_1)ind(a) + (_1)ind(b) + (_1)ind(c) + (_1)ind(d)
=1+(-)+1+1=2.

Aji03a1e)

Cn(M; f) = Z{p € Crit(f) | ind(p) = n)
0: Cn(M7 f) — Cn—l(M;f)

op)= Y. [#Mp.9e

ind(¢)=n—1
\K signed count of flowlines

of —ﬁf from p to ¢




Morse homology
C

X(M)y= Y (-1
peCrit(f)
_ (_1)ind(a) + (_1)ind(b) + (_1)ind(c) + (_1)ind(d)
=1+(-)+1+1=2.

Aji03a1e)

Cn(M; f) = Z{p € Crit(f) | ind(p) = n)
0: Cn(M7 f) — Cn—l(M;f)

op)= Y. [#Mp.9e

ind(¢)=n—1
\K signed count of flowlines

of —ﬁf from p to ¢




Morse homology
C

X(M)y= Y (-1
peCrit(f)
_ (_1)ind(a) + (_1)ind(b) + (_1)ind(c) + (_1)ind(d)
=1+(-)+1+1=2.

Aji03a1e)

Cn(M; f) = Z{p € Crit(f) | ind(p) = n)
0: Cn(M7 f) — Cn—l(M;f)

op)= Y. [#Mp.9e

ind(¢)=n—1
\K signed count of flowlines

of —ﬁf from p to ¢




Morse homology
c d

X(M)y= Y (-1
peCrit(f)
_ (_1)ind(a) + (_1)ind(b) + (_1)ind(c) + (_1)ind(d)
=1+(-)+1+1=2.

Aji03a1e)

Cn(M; f) = Z{p € Crit(f) | ind(p) = n)
0: Cn(M7 f) — Cn—l(M;f)

op)= Y. [#Mp.9e

ind(¢)=n—1
\K signed count of flowlines

of —ﬁf from p to ¢




Morse homology
c d

X(M)y= Y (-1
peCrit(f)
_ (_1)ind(a) + (_1)ind(b) + (_1)ind(c) + (_1)ind(d)
=1+(-)+1+1=2.

Aji03a1e)

Cn(M; f) = Z{p € Crit(f) | ind(p) = n)
0: Cn(M7 f) — Cn—l(M;f)

op)= Y. [#Mp.9e

ind(¢)=n—1
\K signed count of flowlines

of —ﬁf from p to ¢




Morse homology x(My= 3 (—1)m)
c d pECrit(f)

_ (_1)ind(a) + (_1)ind(b) + (_1)ind(c) + (_1)ind(d)

=1+(-1)+1+1=2.

Aji03a1e)

Cn(M; f) = Z{p € Crit(f) | ind(p) = n)
0: Cn(M7 f) — Cn—l(M;f)

op)= Y, [#Mp 9l

ind(¢)=n—1
\K signed count of flowlines

_ 1
a — b < Ccl H0m0|0gy Z 0 Z of —V f from p to g
1



Floer homology and categorification

. X .
Floer '88 Lagrangian Floer homology — Intersection number

X
Floer '88 Instanton Floer homology — Casson invariant



Floer homology and categorification

Floer '88

Floer '83
Ozsvéth-Szabé '01
Hutchings '02

Kronheimer-Mrowka '07

Lagrangian Floer homology
Instanton Floer homology
Heegaard Floer homology
Embedded contact homology

Monopole Floer homology

Intersection number
Casson invariant
Turaev torsion
Turaev torsion

Turaev torsion



Semi-infinite dimensional

Morse homology (PDE)

Floer homology and categorification

Floer '88

Floer '88
Ozsvath-Szabd '01
Hutchings '02
Kronheimer-Mrowka '07

Ozsvath-Szabdé Rasmussen '03

Lagrangian Floer homology
Instanton Floer homology
Heegaard Floer homology
Embedded contact homology
Monopole Floer homology

Knot Floer homology

Intersection number
Casson invariant
Turaev torsion
Turaev torsion
Turaev torsion

Alexander polynomial



Semi-infinite dimensional

Rep. theory

Morse homology (PDE)

(Combinatorial)

Floer homology and categorification

Floer '88

Floer '83

Ozsvath-Szabd '01

Hutchings '02
Kronheimer-Mrowka '07
Ozsvath-Szabé Rasmussen '03
Khovanov '99
Khovanov-Rozansky '08

Lagrangian Floer homology
Instanton Floer homology
Heegaard Floer homology
Embedded contact homology
Monopole Floer homology
Knot Floer homology

slo Khovanov homology

HOMFLY-PT homology

Intersection number
Casson invariant
Turaev torsion
Turaev torsion
Turaev torsion
Alexander polynomial
Jones polynomial

HOMFLY-PT polynomial



Semi-infinite dimensional

Rep. theory

Morse homology (PDE)

(Combinatorial)

Floer homology and categorification

Floer '88

Floer '83

Ozsvath-Szabd '01

Hutchings '02
Kronheimer-Mrowka '07

| Ozsvédth-Szabdé Rasmussen '03

[ Khovanov '99
B Khovanov-Rozansky '08

Seidel-Smith '06

Lagrangian Floer homology —
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The Cohen-Jones-Segal realization question

Question. (Cohen-Jones-Segal) Are these Floer homologies the homologies of
naturally associated spaces?

Seems not have a natural cup product, so perhaps a spectrum (or, sometimes,
pro-spectrum) instead of space?

Spatial Refinement Problem. Given a chain complex C, with
distinguished basis, arising in an interesting way, construct a CW
spectrum X with C¢(X) = C, with the distinguished basis
given by the cells.
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Question. Is there a universal way of refining chain complexes, i.e.,

e T

CW spectra Chain complexes
L 2 -

Theorem. No.

Proof.

e (Carlsson '81) Let G =7Z/2 x Z/2. There is a Z|G]-module P which is not the
homology of any G-equivariant (Moore) space.

e P is the homology of a chain complex over Z[G].
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Applications of spatial refinements

e Spectra have more information than chain complexes:
e Steenrod operations on cohomology,
e Homotopy groups, K-theory, ...

e Maps between spectra have much more information than maps between groups.
e Even maps between spheres are interesting.

e For group actions on spaces, there are meaningful notions of fixed sets, and
localization theorems on equivariant cohomology (Smith theory).
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General strategies for spatial refinements

e Cohen-Jones-Segal '95 gave a general procedure
using higher-dimensional moduli spaces.

e Manolescu '03, Kronheimer-Manolescu used
finite-dimensional approximation (following Furuta and
Bauer) and the Conley index to refine Seiberg-Witten
Floer homology.

e Kragh used finite-dimensional approximation
(following Viterbo) to realize the Viterbo transfer for
Lagrangians in cotangent bundles as a map of spectra.

e Hu-Kriz-Kriz '16, Lawson-Lipshitz-Sarkar used
functors from the Burnside category to spaces to
refine Khovanov homology. One could try to factor
through other categories, as well.
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Flow categories and their realizations

A framed flow category is a way of encoding the moduli space of flows in Morse theory or Floer
theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.
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b

Object  Grading
a 0
b 1
c 2
d 2
a
Morphisms
Hom(c,b) = {a}, Hom(d, b) = {8}, Hom(b,a) = {7, 6} ({0 [T D= )/
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e State sums and the Jones polynomial
e The Khovanov cube

e Applications of Khovanov homology

e Structure of Khovanov homotopy type
e The Khovanov Burnside functor

e Extensions

e Applications

e Some open questions
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(Khovanov '99)
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oO—®
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Famous applications of Khovanov homology

Theorem. (Rasmussen '04) If K is a positive knot, then
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IH 94(K)=gs(K)=n_§+l-
Hl e Example. g4(T,,) = g35(Tpq) = w(T,,) = @—1)2&

—

1 (Torus knot case conjectured by Milnor in '68, proved by Kronheimer and Mrowka in
'93 using instanton gauge theory.)

E,ﬁ,
N

|!l' Theorem. (Kronheimer-Mrowka '10) If rank(Kh(K)) = 2, then K is the unknot.

1 e Proof uses instanton gauge theory.
1“ e OId conjecture. If Vi (q) = ¢+ ¢!, then K is the unknot.
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Formal structure of Khovanov homotopy type
Link di I Finite CW spectrum Khovanov homology
ik diagram :> X4, (L),j €L :> KR (L)
Reidemeister moves Weak equivalences Khovanov isomorphism
L— I :> X (L) =~ X% (L) :> KhJ (L) = Kh (L)
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Formal structure of Khovanov homotopy type
Link di I Finite CW spectrum Khovanov homology
ik diagram :> X4, (L),j €L :> KR (L)
Reidemeister moves Weak equivalences Khovanov isomorphism
Lo T X e (I ) KR(L) = KL

Cobordism L — L’ Cellular map Usual cobordism map
(movie presentation) I:\> X7, (L) < X%h(L’) I:\> Kh"I(L) — Kh7' (L")
Corollary. (Lipshitz-Sarkar '12) There are Steenrod operations on Khovanov homology which are
natural with respect to cobordism maps.
Theorem. (Lipshitz-Sarkar '12) There is an explicit combinatorial formula for the Steenrod square
Sq?: Kh'(K;Z/2) — Kh'**I(K;7/2).
Theorem. (Seed '12) There are knots K, K’ with Kh"I(K) = Kh* (K') (Vi,7) but
Xien (K) % X, (K7).
Theorem. (Lawson-Lipshitz-Sarkar '15) For any k& > 0 there is a (non-prime) knot K so that
Sq*: Kh'J(K;7/2) — Kh'™(K;7Z/2) is non-zero.
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The Burnside category

e The Burnside category was used by Hu-Kriz- | The Burnside category B (of the trivial

Kriz to refine Khovanov homology. group) has:
e Objects finite sets X
e There are functors e Hom(X,Y) finite correspondences

B —— Permu — Spectra

A
X +—— Sets/X +— \/ S X/ \y

zeX

Elmendorf-Mandell K-theory
cf. Barratt-Priddy-Quillen theorem L4 ComPOSItlon flbel’ products
e 2Hom(A, B) bijections

e Can describe the map B — Spectra more A-—=.B

explicitly, via Pontryagin-Thom construction
(cf. Lawson-Lipshitz-Sarkar).
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e Objects: Hom(mo(K,),{1,z}) = {1,2}m0(K)
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e Morphisms: correspondence {1,x}"°(K u) {1,35}770(K v)
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Extensions

e Lawson-Lipshitz-Sarkar: This definition of X, (K) due to Hu-Kriz-Kriz agrees with the
original definition via flow categories due to Lipshitz-Sarkar.

e Jones-Lobb-Schiitz, Lobb-Orson-Schiitz: Many calculations, via moves to simplify flow
categories.

e Lobb-Orson-Schiitz, Willis: An extension to colored Khovanov homology.

e Jones-Lobb-Schiitz: A conjectural extension to sl, Khovanov-Rozansky homology for
certain kinds of knots ( “matched diagrams”).

e Sarkar-Scaduto-Stoffregen: An extension to Ozsvath-Rasmussen-5zabé's odd Khovanov
homology.

e Borodzik-Politarczyk-Silvero, Musyt: Extension to periodic knots.
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Applications

e Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya's transverse invariant,

V(K) € nd(XA(K)) = (X501 (k). §]

e Lipshitz-Sarkar: A refinement of Rasmussen's s-invariant,
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Applications

e Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya's transverse invariant,

U(K) € nd (X3 (K)) =[x (5), 8]
e Lipshitz-Sarkar: A refinement of Rasmussen's s- invariant
® sg2(K) € {s(K),s(K) + 2} \/\
b 294([() > |SSq2<K)" Q
e Lawson-Lipshitz-Sarkar: Forp,q > 0, \

T(3 5)#942

— 1
94(TP7Q#942) (Tp q) + 94 942 + + 1.

o Feller-Lewark-Lobb: Call K squeezed if it is a slice of a minimal-genus cobordism from
Tpqto T p g

® Sg,2 gives one of the few known obstructions to K being squeezed.



Questions



Questions

o Are there refinements of sl,, Khovanov-Rozansky homologies? Khovanov-Rozanksy’s
HOMFLY-PT homology?



Questions

o Are there refinements of sl,, Khovanov-Rozansky homologies? Khovanov-Rozanksy’s
HOMFLY-PT homology?

e Does CP? appear in the Khovanov spectrum of any link? More generally, do Chang
spaces with no Z/2-summand in their cohomology appear?



Questions

o Are there refinements of sl,, Khovanov-Rozansky homologies? Khovanov-Rozanksy’s
HOMFLY-PT homology?

e Does CP? appear in the Khovanov spectrum of any link? More generally, do Chang
spaces with no Z/2-summand in their cohomology appear?

e |s the Khovanov stable homotopy type natural under cobordisms? What about higher
naturality for Khovanov chain complex or Khovanov homotopy type?



Questions

o Are there refinements of sl,, Khovanov-Rozansky homologies? Khovanov-Rozanksy’s
HOMFLY-PT homology?

e Does CP? appear in the Khovanov spectrum of any link? More generally, do Chang
spaces with no Z/2-summand in their cohomology appear?

e |s the Khovanov stable homotopy type natural under cobordisms? What about higher
naturality for Khovanov chain complex or Khovanov homotopy type?

e Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.



Questions

o Are there refinements of sl,, Khovanov-Rozansky homologies? Khovanov-Rozanksy’s
HOMFLY-PT homology?

e Does CP? appear in the Khovanov spectrum of any link? More generally, do Chang
spaces with no Z/2-summand in their cohomology appear?

e |s the Khovanov stable homotopy type natural under cobordisms? What about higher
naturality for Khovanov chain complex or Khovanov homotopy type?

e Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.

e s there an intrinsic description of Floer (or Khovanov) stable homotopy types?



Questions

o Are there refinements of sl,, Khovanov-Rozansky homologies? Khovanov-Rozanksy’s
HOMFLY-PT homology?

e Does CP? appear in the Khovanov spectrum of any link? More generally, do Chang
spaces with no Z/2-summand in their cohomology appear?

e |s the Khovanov stable homotopy type natural under cobordisms? What about higher
naturality for Khovanov chain complex or Khovanov homotopy type?

e Carry out Cohen-Jones-Segal’s program of refining Floer homology in general.
e s there an intrinsic description of Floer (or Khovanov) stable homotopy types?

e (Many other open questions in the written version of this talk.)



Thanks!

e We thank the many colleagues who have helped us learn this material,
Mohammed Abouzaid, Ralph Cohen, Chris Douglas, Ciprian Manolescu, and
many others. ..

e And most especially our collaborators on this project, Tyler Lawson and
Lenhard Ng.

e Thanks also to the organizing committee for inviting us, our hosts for their
hospitality, and all of you for listening.



