Stable Homotopy Refinements and Khovanov homology

Robert Lipshitz¹ and Sucharit Sarkar²

International Congress of Mathematics Rio de Janeiro, Brazil, August 2018

Special thanks to our collaborator Tyler Lawson, whose perspective is reflected throughout.

 $^{^{}m 1}$ RL was supported by NSF CAREER Grant DMS-1642067 and NSF FRG Grant DMS-1560783

 $^{^2}$ SS was supported by NSF CAREER Grant DMS-1643401 and NSF FRG Grant DMS-1563615

Morse homology

- Morse homology
- Floer homology and categorification

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question
- A theorem of Carlsson's

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question
- A theorem of Carlsson's
- Applications of spatial refinements

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question
- A theorem of Carlsson's
- Applications of spatial refinements
- General strategies for spatial refinements

- Morse homology
- Floer homology and categorification
- The Cohen-Jones-Segal question
- A theorem of Carlsson's
- Applications of spatial refinements
- General strategies for spatial refinements
- Flow categories and realization

$$\begin{split} \chi(M) &= \sum_{p \in \operatorname{Crit}(f)} (-1)^{\operatorname{ind}(p)} \\ &= (-1)^{\operatorname{ind}(a)} + (-1)^{\operatorname{ind}(b)} + (-1)^{\operatorname{ind}(c)} + (-1)^{\operatorname{ind}(d)} \\ &= 1 + (-1) + 1 + 1 = 2. \end{split}$$

$$\chi(M) = \sum_{p \in \operatorname{Crit}(f)} (-1)^{\operatorname{ind}(p)}$$

$$= (-1)^{\operatorname{ind}(a)} + (-1)^{\operatorname{ind}(b)} + (-1)^{\operatorname{ind}(c)} + (-1)^{\operatorname{ind}(d)}$$

$$= 1 + (-1) + 1 + 1 = 2.$$

$$C_n(M; f) = \mathbb{Z}\langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle$$

 $\partial \colon C_n(M; f) \to C_{n-1}(M; f)$

$$\partial(p) = \sum [\#\mathcal{M}(p,q)]q.$$

of $-\vec{\nabla} f$ from p to q

ind(q)=n-1signed count of flowlines

$$\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)}$$

$$= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)}$$

$$= 1 + (-1) + 1 + 1 = 2.$$

$$C_n(M; f) = \mathbb{Z}\langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle$$

 $\partial \colon C_n(M; f) \to C_{n-1}(M; f)$

ind(q)=n-1

$$\partial(p) = \sum [\#\mathcal{M}(p,q)]q.$$

signed count of flowlines of $-\vec{\nabla} f$ from p to q

a

a

$$\chi(M) = \sum_{p \in \operatorname{Crit}(f)} (-1)^{\operatorname{ind}(p)}$$

$$= (-1)^{\operatorname{ind}(a)} + (-1)^{\operatorname{ind}(b)} + (-1)^{\operatorname{ind}(c)} + (-1)^{\operatorname{ind}(d)}$$

$$= 1 + (-1) + 1 + 1 = 2.$$

$$C_n(M; f) = \mathbb{Z}\langle p \in \operatorname{Crit}(f) \mid \operatorname{ind}(p) = n \rangle$$

$$\partial \colon C_n(M;f) \to C_{n-1}(M;f)$$

$$\partial(p) = \sum_{\text{ind}(q)=n-1} [\#\mathcal{M}(p,q)]q.$$

signed count of flowlines of $-\vec{\nabla} f$ from p to q

$$\chi(M) = \sum_{p \in \operatorname{Crit}(f)} (-1)^{\operatorname{ind}(p)}$$

$$= (-1)^{\operatorname{ind}(a)} + (-1)^{\operatorname{ind}(b)} + (-1)^{\operatorname{ind}(c)} + (-1)^{\operatorname{ind}(d)}$$

$$= 1 + (-1) + 1 + 1 = 2.$$

$$C_n(M; f) = \mathbb{Z} \langle p \in \text{Crit}(f) \mid \text{ind}(p) = n \rangle$$

$$\partial \colon C_n(M;f) \to C_{n-1}(M;f)$$

$$\partial(p) = \sum_{\text{ind}(q)=n-1} [\#\mathcal{M}(p,q)]q.$$

signed count of flowlines of $-\vec{\nabla} f$ from p to q

$$\chi(M) = \sum_{p \in \operatorname{Crit}(f)} (-1)^{\operatorname{ind}(p)}$$

$$= (-1)^{\operatorname{ind}(a)} + (-1)^{\operatorname{ind}(b)} + (-1)^{\operatorname{ind}(c)} + (-1)^{\operatorname{ind}(d)}$$

$$= 1 + (-1) + 1 + 1 = 2.$$

$$C_n(M; f) = \mathbb{Z}\langle p \in \operatorname{Crit}(f) \mid \operatorname{ind}(p) = n \rangle$$
$$\partial \colon C_n(M; f) \to C_{n-1}(M; f)$$

$$\partial(p) = \sum [\#\mathcal{M}(p,q)]q.$$

$$\partial(p) = \sum_{\text{ind}(q)=n-1} [\#\mathcal{M}(p,q)]q$$

signed count of flowlines of $-\vec{\nabla} f$ from p to q

$$\chi(M) = \sum_{p \in \text{Crit}(f)} (-1)^{\text{ind}(p)}$$

$$= (-1)^{\text{ind}(a)} + (-1)^{\text{ind}(b)} + (-1)^{\text{ind}(c)} + (-1)^{\text{ind}(d)}$$

$$= 1 + (-1) + 1 + 1 = 2.$$

$$C_n(M; f) = \mathbb{Z}\langle p \in \operatorname{Crit}(f) \mid \operatorname{ind}(p) = n \rangle$$

$$\partial \colon C_n(M; f) \to C_{n-1}(M; f)$$

$$\partial(p) = \sum [\#\mathcal{M}(p,q)]q.$$

$$\operatorname{ind}(q) = n - 1$$

 \mathbb{Z}

signed count of flowlines of $-\vec{\nabla} f$ from p to q

Floer '88	Lagrangian Floer homology	$\stackrel{\chi}{\longrightarrow}$ Intersection number
Floer '88	Instanton Floer homology	$\stackrel{\chi}{\longrightarrow}$ Casson invariant

Lagrangian Floer homology	$\stackrel{\chi}{\longrightarrow}$ Intersection number
Instanton Floer homology	$\stackrel{\chi}{\longrightarrow}$ Casson invariant
Heegaard Floer homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
Embedded contact homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
Monopole Floer homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
	Heegaard Floer homology Embedded contact homology

Morse homology (PDE)	Floer '88	Lagrangian Floer homology	$\stackrel{\chi}{\longrightarrow}$ Intersection number
	Floer '88	Instanton Floer homology	$\stackrel{\chi}{\longrightarrow}$ Casson invariant
	Ozsváth-Szabó '01	Heegaard Floer homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
	Hutchings '02	Embedded contact homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
	Kronheimer-Mrowka '07	Monopole Floer homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
	Ozsváth-Szabó Rasmussen '03	Knot Floer homology	$\stackrel{\chi}{\longrightarrow}$ Alexander polynomial

Semi-infinite dimensional

Rep. theory

Morse homology (PDE)	Floer '88	Lagrangian Floer homology	$\stackrel{\chi}{\longrightarrow}$ Intersection number
	Floer '88	Instanton Floer homology	$\stackrel{\chi}{\longrightarrow}$ Casson invariant
	Ozsváth-Szabó '01	Heegaard Floer homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
	Hutchings '02	Embedded contact homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
	Kronheimer-Mrowka '07	Monopole Floer homology	$\stackrel{\chi}{\longrightarrow}$ Turaev torsion
	Ozsváth-Szabó Rasmussen '03	Knot Floer homology	$\stackrel{\chi}{\longrightarrow}$ Alexander polynomial
natorial)	Khovanov '99	\mathfrak{sl}_2 Khovanov homology	$\stackrel{\chi}{\longrightarrow}$ Jones polynomial
	Khovanov-Rozansky '08	HOMFLY-PT homology	$\stackrel{\chi}{\longrightarrow}$ HOMFLY-PT polynomial

 \xrightarrow{x} Casson invariant $\stackrel{\chi}{\longrightarrow}$ Turaev torsion $\xrightarrow{\chi}$ Turaev torsion

 $\xrightarrow{\chi}$ Turaev torsion $\xrightarrow{\chi}$ Alexander polynomial

(and many others...)

The Cohen-Jones-Segal realization question

Question. (Cohen-Jones-Segal) Are these Floer homologies the homologies of naturally associated spaces?

Seems not have a natural cup product, so perhaps a spectrum (or, sometimes, pro-spectrum) instead of space?

The Cohen-Jones-Segal realization question

Question. (Cohen-Jones-Segal) Are these Floer homologies the homologies of naturally associated spaces?

Seems not have a natural cup product, so perhaps a spectrum (or, sometimes, pro-spectrum) instead of space?

Spatial Refinement Problem. Given a chain complex C_* with distinguished basis, arising in an interesting way, construct a CW spectrum X with $C_*^{\operatorname{cell}}(X) \cong C_*$ with the distinguished basis given by the cells.

A theorem of Carlsson's

Question. Is there a universal way of refining chain complexes, i.e.,

A theorem of Carlsson's

Question. Is there a universal way of refining chain complexes, i.e.,

Theorem. No.

Proof.

- (Carlsson '81) Let $G = \mathbb{Z}/2 \times \mathbb{Z}/2$. There is a $\mathbb{Z}[G]$ -module P which is not the homology of any G-equivariant (Moore) space.
- ullet P is the homology of a chain complex over $\mathbb{Z}[G]$.

- Spectra have more information than chain complexes:
 - Steenrod operations on cohomology,
 - Homotopy groups, K-theory, ...

- Spectra have more information than chain complexes:
 - Steenrod operations on cohomology,
 - Homotopy groups, K-theory, . . .
- Maps between spectra have much more information than maps between groups.
 - Even maps between spheres are interesting.

- Spectra have more information than chain complexes:
 - Steenrod operations on cohomology,
 - Homotopy groups, K-theory, . . .
- Maps between spectra have much more information than maps between groups.
 - Even maps between spheres are interesting.
- For group actions on spaces, there are meaningful notions of fixed sets, and localization theorems on equivariant cohomology (Smith theory).

• Cohen-Jones-Segal '95 gave a general procedure using higher-dimensional moduli spaces.

- Cohen-Jones-Segal '95 gave a general procedure using higher-dimensional moduli spaces.
- Manolescu '03, Kronheimer-Manolescu used finite-dimensional approximation (following Furuta and Bauer) and the Conley index to refine Seiberg-Witten Floer homology.

- Cohen-Jones-Segal '95 gave a general procedure using higher-dimensional moduli spaces.
- Manolescu '03, Kronheimer-Manolescu used finite-dimensional approximation (following Furuta and Bauer) and the Conley index to refine Seiberg-Witten Floer homology.
- Kragh used finite-dimensional approximation (following Viterbo) to realize the Viterbo transfer for Lagrangians in cotangent bundles as a map of spectra.

- Cohen-Jones-Segal '95 gave a general procedure using higher-dimensional moduli spaces.
- Manolescu '03, Kronheimer-Manolescu used finite-dimensional approximation (following Furuta and Bauer) and the Conley index to refine Seiberg-Witten Floer homology.
- Kragh used finite-dimensional approximation (following Viterbo) to realize the Viterbo transfer for Lagrangians in cotangent bundles as a map of spectra.
- Hu-Kriz-Kriz '16, Lawson-Lipshitz-Sarkar used functors from the Burnside category to spaces to refine Khovanov homology. One could try to factor through other categories, as well.

Flow categories and their realizations

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Object	Grading
\overline{a}	0
b	1
c	2
d	2

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Grading
0
1
2
2

Morphisms

 $|\operatorname{Hom}(c,b) = \{\alpha\}, \operatorname{Hom}(d,b) = \{\beta\}, \operatorname{Hom}(b,a) = \{\gamma,\delta\}$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Grading
0
1
2
2

$$\begin{array}{l} \operatorname{Hom}(c,b) = \{\alpha\}, \, \operatorname{Hom}(d,b) = \{\beta\}, \, \operatorname{Hom}(b,a) = \{\gamma,\delta\} \\ \operatorname{Hom}(c,a) = \overset{\textstyle \left(\alpha,\delta\right)}{} \overset{\textstyle \left(\alpha,\gamma\right)}{} \end{array}$$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Object	Grading
\overline{a}	0
b	1
c	2
d	2

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Grading
0
1
2
2

$$\operatorname{Hom}(c,b) = \{\alpha\}, \operatorname{Hom}(d,b) = \{\beta\}, \operatorname{Hom}(b,a) = \{\gamma,\delta\}$$
$$\operatorname{Hom}(c,a) = {\alpha,\delta} {\alpha,\gamma}, \operatorname{Hom}(d,a) = {\beta,\delta} {\beta,\gamma}$$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Object	Grading
\overline{a}	0
b	1
c	2
d	2

Morphisms

 $\operatorname{Hom}(c,b) = \{\alpha\}, \operatorname{Hom}(d,b) = \{\beta\}, \operatorname{Hom}(b,a) = \{\gamma,\delta\}$ $\operatorname{Hom}(c,a) = (\alpha,\delta) (\alpha,\gamma), \operatorname{Hom}(d,a) = (\beta,\delta) (\beta,\gamma)$

(And some framing data.)

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Object	Grading
\overline{a}	0
b	1
c	2
d	2

$\begin{aligned} & \text{Morphisms} \\ & \text{Hom}(c,b) = \{\alpha\}, \ \text{Hom}(d,b) = \{\beta\}, \ \text{Hom}(b,a) = \{\gamma,\delta\} \\ & \text{Hom}(c,a) = \overset{\left(\alpha,\delta\right)}{\longrightarrow} \overset{\left(\alpha,\gamma\right)}{\longrightarrow}, \ \text{Hom}(d,a) = \overset{\left(\beta,\delta\right)}{\longrightarrow} \overset{\left(\beta,\gamma\right)}{\longrightarrow} \end{aligned} \\ & \text{(And some framing data.)} \end{aligned}$

$$(\{*\}\coprod D^{\operatorname{gr}(x)+N})/\gamma$$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Grading	*
0	
1	
2	
2	
	0 1 2

Morphisms $\begin{aligned} &\operatorname{Hom}(c,b) = \{\alpha\}, \ \operatorname{Hom}(d,b) = \{\beta\}, \ \operatorname{Hom}(b,a) = \{\gamma,\delta\} \\ &\operatorname{Hom}(c,a) = \overset{\left(\alpha,\delta\right)}{\longrightarrow} \overset{\left(\alpha,\gamma\right)}{\longrightarrow}, \ \operatorname{Hom}(d,a) = \overset{\left(\beta,\delta\right)}{\longrightarrow} \overset{\left(\beta,\gamma\right)}{\longrightarrow} \end{aligned} \\ &\left(\operatorname{And some framing data.}\right) \end{aligned}$ (And some framing data.)

$$(\{*\}\coprod \coprod_{x\in\Omega^{\mathbb{N}}} D^{\operatorname{gr}(x)+N})/\gamma$$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

_			
	Object	Grading	* II • Da
	\overline{a}	0	
	b	1	
	c	2	
	d	2	

$$(\{*\}\coprod\prod_{x\in\mathcal{O}^{\mathbf{b}}}D^{\operatorname{gr}(x)+N})/\sim$$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

_			\overline{D}
	Object	Grading	
	\overline{a}	0	
	b	1	
	c	2	
	d	2	
L			

$$(\{*\}\coprod\coprod_{x\in\mathcal{O}_{\mathsf{b}}}D^{\operatorname{gr}(x)+N})/\sim$$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

				- D
	Object	Grading	* <u>II</u>	$D_{\tilde{a}}$ $D_{\tilde{b}}$
	\overline{a}	0		γ δ
	b	1		
	c	2		a
	d	2	11	
l				V /
				D_c^3

Hom
$$(c,b) = \{\alpha\}$$
, Hom $(d,b) = \{\beta\}$, Hom $(b,a) = \{\gamma,\delta\}$
Hom $(c,a) = {\alpha,\delta \choose \alpha,\gamma}$, Hom $(d,a) = {\beta,\delta \choose \beta,\gamma}$
(And some framing data.)

$$(\{*\}\coprod_{x\in\mathrm{Ob}}D^{\mathrm{gr}(x)+N})/\sim$$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

Grading	1
0	
1	
2	
2	
	0 1 2

Hom
$$(c,b) = \{\alpha\}$$
, Hom $(d,b) = \{\beta\}$, Hom $(b,a) = \{\gamma,\delta\}$
Hom $(c,a) = {\alpha,\delta \choose \alpha,\gamma}$, Hom $(d,a) = {\beta,\delta \choose \beta,\gamma}$
(And some framing data.)

$$(\{*\}\coprod_{x\in\mathrm{Ob}}D^{\mathrm{gr}(x)+N})/\sim$$

A *framed flow category* is a way of encoding the moduli space of flows in Morse theory or Floer theory. Cohen-Jones-Segal turn a framed flow category into a CW spectrum.

0
1
2
2

Hom
$$(c,b) = \{\alpha\}$$
, Hom $(d,b) = \{\beta\}$, Hom $(b,a) = \{\gamma,\delta\}$
Hom $(c,a) = (\alpha,\delta) (\alpha,\gamma)$, Hom $(d,a) = (\beta,\delta) (\beta,\gamma)$
(And some framing data.)

$$(\{*\} \coprod_{x \in \text{Ob}} D^{\text{gr}(x)+N}) / \sim$$
$$\simeq S^1 \vee S^3 = \Sigma(S_+^2).$$

- State sums and the Jones polynomial
- The Khovanov cube

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
- The Khovanov Burnside functor

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
- The Khovanov Burnside functor
- Extensions

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
- The Khovanov Burnside functor
- Extensions
- Applications

- State sums and the Jones polynomial
- The Khovanov cube
- Applications of Khovanov homology
- Structure of Khovanov homotopy type
- The Khovanov Burnside functor
- Extensions
- Applications
- Some open questions

Cube of resolutions (Kauffman '87)

Khovanov Frobenius algebra
$$V=\mathbb{Z}[x]/(x^2)$$

```
Khovanov Frobenius algebra (1 + 1 TQFT) {\rm circle} \longrightarrow V = \mathbb{Z}[x]/(x^2)
```

```
Khovanov Frobenius algebra (1 + 1 TQFT) {\rm circle} \longrightarrow V = \mathbb{Z}[x]/(x^2) {\rm II} \longrightarrow \otimes
```

```
Khovanov Frobenius algebra (1 + 1 TQFT) \operatorname{circle} \longrightarrow V = \mathbb{Z}[x]/(x^2) \amalg \longrightarrow \otimes \operatorname{merge} \longrightarrow \operatorname{multiplication} m \colon V \otimes V \to V
```

```
\begin{split} \text{Khovanov Frobenius algebra ($1+1$ TQFT)} \\ \operatorname{circle} &\longrightarrow V = \mathbb{Z}[x]/(x^2) \\ \operatorname{II} &\longrightarrow \otimes \\ \operatorname{merge} &\longrightarrow \operatorname{multiplication} m \colon V \otimes V \to V \\ \operatorname{split} &\longrightarrow \operatorname{comultiplication} \Delta \colon V \to V \otimes V \\ 1 &\mapsto 1 \otimes x + x \otimes 1 \\ x &\mapsto x \otimes x \end{split}
```


Khovanov Frobenius algebra (1 + 1 TQFT)
$$\operatorname{circle} \longrightarrow V = \mathbb{Z}[x]/(x^2)$$

$$\amalg \longrightarrow \otimes$$

$$\operatorname{merge} \longrightarrow \operatorname{multiplication} m \colon V \otimes V \to V$$

$$\operatorname{split} \longrightarrow \operatorname{comultiplication} \Delta \colon V \to V \otimes V$$

$$1 \mapsto 1 \otimes x + x \otimes 1$$

$$x \mapsto x \otimes x$$

The Khovanov cube (Khovanov '99)

$$\begin{split} \text{Khovanov Frobenius algebra } & (1+1 \text{ TQFT}) \\ & \text{circle} \longrightarrow V = \mathbb{Z}[x]/(x^2) \\ & \text{II} \longrightarrow \otimes \\ & \text{merge} \longrightarrow \text{multiplication } m \colon V \otimes V \to V \\ & \text{split} \longrightarrow \text{comultiplication } \Delta \colon V \to V \otimes V \\ & 1 \mapsto 1 \otimes x + x \otimes 1 \\ & x \mapsto x \otimes x \end{split}$$

Famous applications of Khovanov homology

Theorem. (Rasmussen '04) If K is a positive knot, then

$$g_4(K) = g_3(K) = \frac{n-k+1}{2}.$$

• Example. $g_4(T_{p,q})=g_3(T_{p,q})=u(T_{p,q})=\frac{(p-1)(q-1)}{2}$. (Torus knot case conjectured by Milnor in '68, proved by Kronheimer and Mrowka in '93 using instanton gauge theory.)

Famous applications of Khovanov homology

Theorem. (Rasmussen '04) If K is a positive knot, then

$$g_4(K) = g_3(K) = \frac{n-k+1}{2}.$$

• Example. $g_4(T_{p,q})=g_3(T_{p,q})=u(T_{p,q})=\frac{(p-1)(q-1)}{2}$. (Torus knot case conjectured by Milnor in '68, proved by Kronheimer and Mrowka in '93 using instanton gauge theory.)

Theorem. (Kronheimer-Mrowka '10) If rank(Kh(K)) = 2, then K is the unknot.

- Proof uses instanton gauge theory.
- **Old conjecture.** If $V_K(q) = q + q^{-1}$, then K is the unknot.

Link diagram
$$L$$
 $X_{Kh}^{j}(L), j \in \mathbb{Z}$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$

Link diagram
$$L$$
 $X_{Kh}^{j}(L), j \in \mathbb{Z}$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \simeq X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \simeq X_{Kh}^{i,j}(L)$

Corollary. (Lipshitz-Sarkar '12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.

Link diagram
$$L$$
 $X_{Kh}^{j}(L), j \in \mathbb{Z}$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$

Corollary. (Lipshitz-Sarkar '12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.

Theorem. (Lipshitz-Sarkar '12) There is an explicit combinatorial formula for the Steenrod square $\operatorname{Sq}^2\colon Kh^{i,j}(K;\mathbb{Z}/2)\to Kh^{i+2,j}(K;\mathbb{Z}/2).$

Link diagram
$$L$$
 $X_{Kh}^{j}(L), j \in \mathbb{Z}$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$

Corollary. (Lipshitz-Sarkar '12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.

Theorem. (Lipshitz-Sarkar '12) There is an explicit combinatorial formula for the Steenrod square $\operatorname{Sq}^2\colon Kh^{i,j}(K;\mathbb{Z}/2)\to Kh^{i+2,j}(K;\mathbb{Z}/2).$

Theorem. (Seed '12) There are knots K, K' with $Kh^{i,j}(K) \cong Kh^{i,j}(K')$ ($\forall i, j$) but $X^j_{Kh}(K) \not\simeq X^j_{Kh}(K')$.

Link diagram
$$L$$
 $X_{Kh}^{j}(L), j \in \mathbb{Z}$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$ $X_{Kh}^{i,j}(L) \cong X_{Kh}^{i,j}(L)$

Corollary. (Lipshitz-Sarkar '12) There are Steenrod operations on Khovanov homology which are natural with respect to cobordism maps.

Theorem. (Lipshitz-Sarkar '12) There is an explicit combinatorial formula for the Steenrod square $\operatorname{Sq}^2\colon Kh^{i,j}(K;\mathbb{Z}/2)\to Kh^{i+2,j}(K;\mathbb{Z}/2).$

Theorem. (Seed '12) There are knots K, K' with $Kh^{i,j}(K) \cong Kh^{i,j}(K')$ ($\forall i, j$) but $X^j_{Kh}(K) \not\simeq X^j_{Kh}(K')$.

Theorem. (Lawson-Lipshitz-Sarkar '15) For any k > 0 there is a (non-prime) knot K so that $\operatorname{Sq}^k \colon Kh^{i,j}(K;\mathbb{Z}/2) \to Kh^{i+k,j}(K;\mathbb{Z}/2)$ is non-zero.

• The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

• The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

The $\textit{Burnside category } \mathcal{B}$ (of the trivial group) has:

 $\bullet \ \mathsf{Objects} \ \mathsf{finite} \ \mathsf{sets} \ X$

• The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

The *Burnside category* \mathcal{B} (of the trivial group) has:

- Objects finite sets X
- \bullet Hom(X,Y) finite correspondences

• Composition fiber products

• The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.

The Burnside category ${\cal B}$ (of the trivial group) has:

- Objects finite sets X
- \bullet $\operatorname{Hom}(X,Y)$ finite correspondences

- Composition fiber products
- $2\mathrm{Hom}(A,B)$ bijections

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.
- There are functors

The Burnside category \mathcal{B} (of the trivial group) has:

- Objects finite sets X
- $\operatorname{Hom}(X,Y)$ finite correspondences

- Composition fiber products
- $2\mathrm{Hom}(A,B)$ bijections

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.
- There are functors

$$\mathcal{B} \longrightarrow \mathcal{P}ermu \longrightarrow \mathcal{S}pectra$$
 $X \longmapsto \operatorname{Sets}/X \longmapsto \bigvee_{x \in X} \mathbb{S}$

The *Burnside category* \mathcal{B} (of the trivial group) has:

- Objects finite sets X
- $\operatorname{Hom}(X,Y)$ finite correspondences

- Composition fiber products
- $2\mathrm{Hom}(A,B)$ bijections

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.
- There are functors

The Burnside category ${\cal B}$ (of the trivial group) has:

- Objects finite sets X
- $\operatorname{Hom}(X,Y)$ finite correspondences

- Composition fiber products
- $2\mathrm{Hom}(A,B)$ bijections

- The Burnside category was used by Hu-Kriz-Kriz to refine Khovanov homology.
- There are functors

ullet Can describe the map $\mathcal{B} o \mathcal{S}\mathit{pectra}$ more explicitly, via Pontryagin-Thom construction (cf. Lawson-Lipshitz-Sarkar).

The Burnside category ${\cal B}$ (of the trivial group) has:

- Objects finite sets X
- $\operatorname{Hom}(X,Y)$ finite correspondences

- Composition fiber products
- $2\mathrm{Hom}(A,B)$ bijections

$$C_{01} \xrightarrow{f_{\bullet 1}} C_{11}$$

$$f_{0\bullet} \uparrow \qquad \uparrow f_{1\bullet}$$

$$C_{00} \xrightarrow{f_{\bullet 0}} C_{10}$$

$$C_{01} \xrightarrow{f_{0\bullet}} C_{11}$$

$$f_{0\bullet} \uparrow \qquad \uparrow f_{1\bullet}$$

$$C_{00} \xrightarrow{f_{\bullet 0}} C_{10}$$

$$Cone$$

$$Cone(f_{0\bullet}) \xrightarrow{f_{\bullet 0}[1] \oplus f_{\bullet 1}} Cone(f_{1\bullet})$$

$$Cone(f_{0\bullet}[1] \oplus f_{\bullet 1})$$

$$C_{01} \xrightarrow{f_{\bullet 1}} C_{11}$$

$$f_{0\bullet} \uparrow \qquad \uparrow f_{1\bullet} \qquad C_{00} \xrightarrow{f_{\bullet 0}} C_{10}$$

$$C_{00} \xrightarrow{f_{\bullet 0}} C_{00}$$

$$C_{00} \xrightarrow{f_{\bullet 0}} C_{00}$$

Cone
$$(f_{ullet}0[1] \oplus f_{ullet}1)$$

- Can totalize all at once, using homotopy colimits.
- Works if diagrams are merely homotopy coherent.

• Objects: $\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\}^{\pi_0(K_v)}$

• Morphisms: correspondence $\{1,x\}^{\pi_0(K_u)} \to \{1,x\}^{\pi_0(K_v)}$

• Morphisms: correspondence $\{1,x\}^{\pi_0(K_u)} \to \{1,x\}^{\pi_0(K_v)}$

• Morphisms: correspondence
$$\{1,x\}^{\pi_0(K_u)} o \{1,x\}^{\pi_0(K_v)}$$
 $s^{-1}(y) \cap t^{-1}(z), y \in \{1,x\}^{\pi_0(K_u)}, z \in \{1,x\}^{\pi_0(K_v)}$

• Morphisms: correspondence $\{1,x\}^{\pi_0(K_u)} \to \{1,x\}^{\pi_0(K_v)}$

$$s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\}^{\pi_0(K_u)}, z \in \{1, x\}^{\pi_0(K_v)}$$

genus = 0, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 1$

$$s = 0, |\{y(C) = 1\}| + |\{z(C) = x\}| = 0$$

 $\mapsto \{pt\}$

• Objects: $\operatorname{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\}^{\pi_0(K_v)}$

• Morphisms: correspondence $\{1,x\}^{\pi_0(K_u)} \to \{1,x\}^{\pi_0(K_v)}$

$$s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\}^{\pi_0(K_u)}, z \in \{1, x\}^{\pi_0(K_v)}$$

genus = 0, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 1$

$$s = 0, |\{y(C) = 1\}| + |\{z(C) = x\}| = 0$$

$$\mapsto \{\mathrm{pt}\}$$

• Objects: $\text{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\}^{\pi_0(K_v)}$

• Morphisms: correspondence $\{1,x\}^{\pi_0(K_u)} \to \{1,x\}^{\pi_0(K_v)}$

$$s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\}^{\pi_0(K_u)}, z \in \{1, x\}^{\pi_0(K_v)}$$

genus = 0, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 1$

$$\mapsto \{\mathrm{pt}\}$$

genus =
$$1, |\{y(C) = 1\}| + |\{z(C) = x\}| = 0$$

Set of generators of the kernel of $\mapsto H^1(B) \to H^1(B \cap \{0,1\} \times \mathbb{R})$

• Objects: $\operatorname{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\}^{\pi_0(K_v)}$

$$s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\}^{\pi_0(K_u)}, z \in \{1, x\}^{\pi_0(K_v)}$$

genus = 0, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 1$

$$\mapsto \{pt\}$$

genus = 1,
$$|\{y(C) = 1\}| + |\{z(C) = x\}| = 0$$

Set of generators of the kernel of $\mapsto H^1(B) \to H^1(B \cap \{0,1\} \times \mathbb{R})$

• Objects: $\operatorname{Hom}(\pi_0(K_v), \{1, x\}) = \{1, x\}^{\pi_0(K_v)}$

$$s^{-1}(y) \cap t^{-1}(z), y \in \{1, x\}^{\pi_0(K_u)}, z \in \{1, x\}^{\pi_0(K_v)}$$

genus = 0, $|\{y(C) = 1\}| + |\{z(C) = x\}| = 1$

$$\mapsto \{\mathrm{pt}\}$$

genus =
$$1, |\{y(C) = 1\}| + |\{z(C) = x\}| = 0$$

Set of generators of the kernel of $\mapsto H^1(B) \to H^1(B \cap \{0,1\} \times \mathbb{R})$

• 2-morphisms: . . .

ullet Lawson-Lipshitz-Sarkar: This definition of $X_{\mathit{Kh}}(K)$ due to Hu-Kriz-Kriz agrees with the

original definition via flow categories due to Lipshitz-Sarkar.

- Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.
- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.

- Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.
- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.
- Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.

- ullet Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.
- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.
- Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.
- Jones-Lobb-Schütz: A conjectural extension to \mathfrak{sl}_n Khovanov-Rozansky homology for certain kinds of knots ("matched diagrams").

- ullet Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.
- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.
- Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.
- Jones-Lobb-Schütz: A conjectural extension to \mathfrak{sl}_n Khovanov-Rozansky homology for certain kinds of knots ("matched diagrams").
- Sarkar-Scaduto-Stoffregen: An extension to Ozsváth-Rasmussen-Szabó's odd Khovanov homology.

- Lawson-Lipshitz-Sarkar: This definition of $X_{Kh}(K)$ due to Hu-Kriz-Kriz agrees with the original definition via flow categories due to Lipshitz-Sarkar.
- Jones-Lobb-Schütz, Lobb-Orson-Schütz: Many calculations, via moves to simplify flow categories.
- Lobb-Orson-Schütz, Willis: An extension to colored Khovanov homology.
- Jones-Lobb-Schütz: A conjectural extension to \mathfrak{sl}_n Khovanov-Rozansky homology for certain kinds of knots ("matched diagrams").
- Sarkar-Scaduto-Stoffregen: An extension to Ozsváth-Rasmussen-Szabó's odd Khovanov homology.
- Borodzik-Politarczyk-Silvero, Musyt: Extension to periodic knots.

$$\Psi(K) \in \pi_s^0 \left(X_{Kh}^{sl(K)}(K) \right) = \left[X_{Kh}^{sl(K)}(K), \mathbb{S} \right]$$

$$\Psi(K) \in \pi_s^0(X_{Kh}^{sl(K)}(K)) = [X_{Kh}^{sl(K)}(K), \mathbb{S}]$$

- Lipshitz-Sarkar: A refinement of Rasmussen's s-invariant,
 - $s_{Sq^2}(K) \in \{s(K), s(K) + 2\}.$
 - $2g_4(K) \ge |s_{Sq^2}(K)|$.

$$\Psi(K) \in \pi_s^0\left(X_{Kh}^{sl(K)}(K)\right) = \left[X_{Kh}^{sl(K)}(K), \mathbb{S}\right]$$

- ullet Lipshitz-Sarkar: A refinement of Rasmussen's s-invariant,
 - $s_{Sq^2}(K) \in \{s(K), s(K) + 2\}.$
 - $2g_4(K) \ge |s_{Sq^2}(K)|$.

$$\Psi(K) \in \pi_s^0(X_{Kh}^{sl(K)}(K)) = \left[X_{Kh}^{sl(K)}(K), \mathbb{S}\right]$$

- Lipshitz-Sarkar: A refinement of Rasmussen's s-invariant.
 - $s_{S_{0}^{2}}(K) \in \{s(K), s(K) + 2\}.$
 - $2g_4(K) \ge |s_{Sq^2}(K)|$.
- Lawson-Lipshitz-Sarkar: For p, q > 0.

$$g_4(T_{p,q} \# 9_{42}) = g_4(T_{p,q}) + g_4(9_{42}) = \frac{(p-1)(q-1)}{2} + 1.$$

$$(T_{p,q} \# 9_{42}) = g_4(T_{p,q}) + g_4(9_{42}) = \frac{(r - r)(4 - r)}{2} + 1$$

$$\Psi(K) \in \pi_s^0(X_{Kh}^{sl(K)}(K)) = [X_{Kh}^{sl(K)}(K), \mathbb{S}]$$

- Lipshitz-Sarkar: A refinement of Rasmussen's s-invariant,
 - $s_{S_{0}^{2}}(K) \in \{s(K), s(K) + 2\}.$
 - $2g_4(K) \ge |s_{Sq^2}(K)|$.
- Lawson-Lipshitz-Sarkar: For p, q > 0,

$$g_4(T_{p,q}\#9_{42}) = g_4(T_{p,q}) + g_4(9_{42}) = \frac{(p-1)(q-1)}{2} + 1.$$

$$\Psi(K) \in \pi_s^0(X_{Kh}^{sl(K)}(K)) = \left[X_{Kh}^{sl(K)}(K), \mathbb{S}\right]$$

- Lipshitz-Sarkar: A refinement of Rasmussen's s-invariant,
 - $s_{So^2}(K) \in \{s(K), s(K) + 2\}.$
 - $2g_4(K) \ge |s_{Sq^2}(K)|$.
- Lawson-Lipshitz-Sarkar: For p, q > 0,

• Lipshitz-Ng-Sarkar: A stable homotopy refinement of Plamenevskaya's transverse invariant,

$$\Psi(K) \in \pi_s^0 \left(X_{Kh}^{sl(K)}(K) \right) = \left[X_{Kh}^{sl(K)}(K), \mathbb{S} \right]$$

- Lipshitz-Sarkar: A refinement of Rasmussen's s-invariant,
 - $s_{S_{0}^{2}}(K) \in \{s(K), s(K) + 2\}.$
 - $2g_4(K) \ge |s_{Sq^2}(K)|$.
- Lawson-Lipshitz-Sarkar: For p, q > 0,

$$g_4(T_{p,q}\#9_{42}) = g_4(T_{p,q}) + g_4(9_{42}) = \frac{(p-1)(q-1)}{2} + 1.$$

 $T(3,5)#9_{42}$

- ullet Feller-Lewark-Lobb: Call K squeezed if it is a slice of a minimal-genus cobordism from $T_{p,q}$ to $T_{-p',q'}$.
 - ullet s_{Sq^2} gives one of the few known obstructions to K being squeezed.

ullet Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky's HOMFLY-PT homology?

- ullet Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky's HOMFLY-PT homology?
- Does $\mathbb{C}P^2$ appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$ -summand in their cohomology appear?

- ullet Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky's HOMFLY-PT homology?
- ullet Does $\mathbb{C}P^2$ appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$ -summand in their cohomology appear?
- Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?

- ullet Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky's HOMFLY-PT homology?
- Does $\mathbb{C}P^2$ appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$ -summand in their cohomology appear?
- Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?
- Carry out Cohen-Jones-Segal's program of refining Floer homology in general.

- ullet Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky's HOMFLY-PT homology?
- ullet Does $\mathbb{C}P^2$ appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$ -summand in their cohomology appear?
- Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?
- Carry out Cohen-Jones-Segal's program of refining Floer homology in general.
- Is there an intrinsic description of Floer (or Khovanov) stable homotopy types?

- ullet Are there refinements of \mathfrak{sl}_n Khovanov-Rozansky homologies? Khovanov-Rozansky's HOMFLY-PT homology?
- Does $\mathbb{C}P^2$ appear in the Khovanov spectrum of any link? More generally, do Chang spaces with no $\mathbb{Z}/2$ -summand in their cohomology appear?
- Is the Khovanov stable homotopy type natural under cobordisms? What about higher naturality for Khovanov chain complex or Khovanov homotopy type?
- Carry out Cohen-Jones-Segal's program of refining Floer homology in general.
- Is there an intrinsic description of Floer (or Khovanov) stable homotopy types?
- (Many other open questions in the written version of this talk.)

Thanks!

- We thank the many colleagues who have helped us learn this material, Mohammed Abouzaid, Ralph Cohen, Chris Douglas, Ciprian Manolescu, and many others. . .
- And most especially our collaborators on this project, Tyler Lawson and Lenhard Ng.
- Thanks also to the organizing committee for inviting us, our hosts for their hospitality, and all of you for listening.