A Heegaard Floer analog of algebraic torsion

Çağatay Kutluhan Gordana Matić Jeremy Van Horn-Morris Andy Wand

June 15, 2015

BACKGROUND AND MOTIVATION

Definition A co-oriented *contact structure* on a 3-manifold M is a 2-plane field ξ defined as the kernel of a *contact 1-form* λ such that $\lambda \wedge d\lambda$ is a volume form. For example, $\lambda = dz - ydx$ on \mathbb{R}^3 .

Definition An *overtwisted disk* in a contact 3-manifold (M, ξ) is an embedded disk $D \subset M$ such that ξ is transverse to D in $\nu(\partial D)$ and $T\partial D \subset \xi$.

A contact 3-manifold (M, ξ) is called *overtwisted*, if it contains an overtwisted disk. Otherwise, it is called *tight*.

• Eliashberg:

 $\{2 - \text{plane fields}\} \sim \{\text{OT contact structures}\}.$

• Tight contact structures naturally appear on the boundary of symplectic manifolds. (Eliashberg–Gromov)

Question How to distinguish tight from OT via Floer homology?

The contact class:

- $c^+(\xi) \in HF^+(-M, \mathfrak{s}_{\xi})$ ($\widehat{c}(\xi) \in \widehat{HF}(-M, \mathfrak{s}_{\xi})$) by Ozsváth–Szabó. Alternative description of $\widehat{c}(\xi)$ by Honda–Kazez–Matić.
- $\psi(\xi) \in \widecheck{HM}_{\bullet}(-M, \mathfrak{s}_{\xi}, c_b, \Lambda_{\eta})$ by Kronheimer–Mrowka, and by Taubes.

Theorem (Ozsváth–Szabó, Honda–Kazez–Matić) If ξ is OT, then $c^+(\xi) = 0$.

(The converse is false.)

Theorem (Kronheimer–Mrowka) If ξ is symplectically fillable, then $\psi(\xi) \neq 0$.

Theorem (Taubes + Colin–Ghiggini–Honda) $HF^+(-M, \mathfrak{s}_{\xi}) \cong \widetilde{HM}_{\bullet}(-M, \mathfrak{s}_{\xi})$ $c^+(\xi) \mapsto \psi(\xi).$

Factors through Hutchings's embedded contact homology (ECH).

ECH preliminaries: Let Y be a closed orientable 3-manifold. A stable Hamiltonian structure on Y is a pair (λ, ω) where

•
$$\omega \in \Omega^2(Y)$$
 such that $d\omega = 0$,

- $\lambda \in \Omega^1(Y)$ such that $d\lambda = h \omega$ for $h \in C^{\infty}(Y)$,
- $\bullet \ \lambda \wedge \omega \neq 0.$

The associated Reeb vector field R is uniquely defined by

•
$$\omega(R, \cdot) = 0$$

•
$$\lambda(R) = 1.$$

A closed integral curve γ of R, modulo linear parametrization, is called a *Reeb orbit*.

A Reeb orbit γ is *non-degenerate* if 1 is not an eigenvalue of the linearized return map $P_{\gamma}: \xi_x \to \xi_x \in SL(2, \mathbb{R})$, where $\xi = ker(\lambda)$.

A Reeb orbit γ is *elliptic* (resp. *hyperbolic*) if $|tr(P_{\gamma})| < 2$ (resp. > 2).

Suppose that all Reeb orbits are non-degenerate.

Definition Fix $\Gamma \in H_1(Y)$. An *orbit set* Θ is a finite collection $\{(\gamma, m)\}$ where

- γ are distinct embedded Reeb orbits, and $m \in \mathbb{Z}_+$,
- $\sum m[\gamma] = \Gamma.$

Let (X, ω) be a symplectic cobordism from $(Y_-, \lambda_-, \omega_-)$ to $(Y_+, \lambda_+, \omega_+)$, i.e. $\omega|_{Y_{\pm}} = \omega_{\pm}$, and J be an almost complex structure on \overline{X} such that

- ω tames J,
- J is cylindrical on the ends.

Fix $\Theta_{\pm} \subset Y_{\pm}$ orbit sets such that $[\Theta_{+}] = [\Theta_{-}]$ in $H_1(X)$. Then for any $Z \in H_2(X, \Theta_{+}, \Theta_{-})$, Hutchings defines

$$J_{\circ}(\Theta_{+},\Theta_{-},Z) := -c_{\tau}(Z) + Q_{\tau}(Z) + \mu_{\tau}'(\Theta_{+}) - \mu_{\tau}'(\Theta_{-}),$$

and

$$J_{\pm}(\Theta_+,\Theta_-,Z) := J_{\circ}(\Theta_+,\Theta_-,Z) \pm |\Theta_+| \mp |\Theta_-|.$$

In particular, if $X = [0, 1] \times Y$ for some (Y, λ, ω) , then

- J_* depends only on Z,
- J_* is additive, i.e.

$$J_*(\Theta_+,\Theta_-,Z+Z') = J_*(\Theta_+,\Theta,Z) + J_*(\Theta,\Theta_-,Z').$$

Fact If C is an embedded J-holomorphic curve in X with ends at distinct embedded Reeb orbits, then

$$J_{\circ}(C) = -\chi(C).$$

AN ANALOG OF ALGEBRAIC TORSION (FOLLOWING HUTCHINGS'S RECIPE)

Let (S, ϕ) be an (abstract) open book decomposition for M supporting ξ :

 ${\circ}~S$ compact oriented surface with genus- g and ${\scriptscriptstyle\rm B}$ boundary components,

• $\phi:S\to S$ orientation reversing diffeomorphism.

Let $a = \{a_1, \ldots, a_G\}$, where G = 2g + B - 1, be a basis of arcs for S.

Then (Σ, α, β) is a Heegaard diagram for M. Suppose that $(\Sigma, \alpha, \beta, z)$ is strongly admissible for \mathfrak{s}_{ξ} (after an isotopy of ϕ).

Construct $Y \simeq M # \mathcal{H}_0 # \mathcal{H}_1 # \cdots # \mathcal{H}_G$ where $\mathcal{H}_i \simeq S^1 \times S^2$.

There exists a stable Hamiltonian structure (λ, ω) on Y "compatible" with $(\Sigma, \alpha, \beta, z)$.

Fix $\Gamma \in H_1(Y)$ such that $\Gamma|_{H_1(M)} = 0$ and

$$\Gamma \cdot [S^2] = \begin{cases} 0 & \text{in } \mathcal{H}_0 \\ 1 & \text{in } \mathcal{H}_i, i \neq 0. \end{cases}$$

Then for any orbit set $\Theta = \{(\gamma, m)\}$ with $[\Theta] = \Gamma$, γ are **non-degenerate**, and **hyperbolic**. Define

$$\mathcal{Z}_{ech,M} := \{ \Theta = \{ \gamma \} \mid [\Theta] = \Gamma \}.$$

We have

$$\mathcal{Z}_{ech,M} \simeq \mathcal{Z}_{HF} imes \prod_{i=1}^{G} \mathbb{Z} imes 0,$$

where $O = \{0, +1, -1, \{+1, -1\}\}.$

Consider the chain complex $(\widehat{ecc}(Y, \lambda, \omega, \Gamma; J), \widehat{\partial}_{ech})$ where \widehat{ecc} is freely generated by $\mathcal{Z}_{ech,M}$.

Let $\Theta_{\pm} \subset \mathcal{Z}_{ech,M}$ and $C \in \mathcal{M}(\Theta_+, \Theta_-)$ be embedded. Then

$$J_{+}(C) = -\chi(C) + |\Theta_{+}| - |\Theta_{-}|,$$

or

$$J_{+}(C) = \sum_{j} (2g(C_{j}) - 2 + 2|\Theta_{+j}|),$$

where C_j is connected. Hence

- $2|J_+(C),$
- $J_+(C) \ge 0$ unless each $g(C_j) = 0$ and $\Theta_{+j} = \emptyset$ for some j.

Instead, work with the subcomplex $\widehat{ecc}_{\circ}(Y, \lambda, \omega, \Gamma; J)$ freely generated by those $\Theta \in \mathcal{Z}_{ech,M}$ such that

$$\Theta|_{\mathcal{H}_i} = (0,0)$$

for each $i = 1, \ldots, G$. Then, we have

$$\widehat{ecc}_{\circ}(Y,\lambda,\omega,\Gamma;J) \stackrel{\mathbf{K}.-\mathbf{Lee-Taubes}}{\cong} \widehat{CF}(-M,\mathfrak{s}_{\xi}).$$

On $\widehat{ecc}_{\circ}(Y, \lambda, \omega, \Gamma; J)$, write

$$\widehat{\partial}_{ech} = \partial_0 + \partial_1 + \dots + \partial_k + \dots$$

where ∂_k counts $J_+ = 2k$ curves. Since $\widehat{\partial}_{ech} \circ \widehat{\partial}_{ech} = 0$, and J_+ is additive,

$$\sum_{i+j=l} \partial_i \circ \partial_j = 0$$

for all $l \ge 0$. In particular, $\partial_0 \circ \partial_0 = 0$, $\partial_0 \circ \partial_1 + \partial_1 \circ \partial_0 = 0$, etc.

As a result, there is a spectral sequence $E^*(S, \phi, a; J)$ such that

$$E^{k+1}(S,\phi,a;J) \cong H_*(E^k(S,\phi,a;J),\partial_k),$$

and $E^0(S, \phi, a; J) \cong \widehat{ecc}_{\circ}(Y, \lambda, \omega, \Gamma; J).$

Definition Given (S, ϕ, a) and J, let $AT(S, \phi, a; J)$ denote the smallest non-negative integer such that $[\Theta_{\xi}] = 0$ in $E^{k+1}(S, \phi, a; J)$.

 (M,ξ) is said to have algebraic k-torsion if $AT(S,\phi,a;J) = k$ for some choice of (S,ϕ,a) and J.

Remark If $\hat{c}(\xi) = 0$, then $AT(S, \phi, a; J) < \infty$. The converse is not necessarily true.

Description via Heegaard diagram: Use Lipshitz's reformulation.

$$J_{+}(C) = -\chi(C) + |\Theta_{+}| - |\Theta_{-}| = -\chi(C_{L}) + G + |\Theta_{+}| - |\Theta_{-}|.$$

Menawhile, Lipshitz finds

$$\chi(C_L) = G - n_{\mathbf{x}_+}(\mathcal{D}) - n_{\mathbf{x}_-}(\mathcal{D}) + e(\mathcal{D})$$

ind(C_L) = $n_{\mathbf{x}_+}(\mathcal{D}) + n_{\mathbf{x}_-}(\mathcal{D}) + e(\mathcal{D}).$

Hence,

$$J_{+}(C) = 2[n_{\mathbf{x}_{+}}(\mathcal{D}) + n_{\mathbf{x}_{-}}(\mathcal{D})] - 1 + |\mathbf{x}_{+}| - |\mathbf{x}_{-}|.$$

More generally, for any domain \mathcal{D} ,

$$J_{+}(\mathcal{D}) = \mu(\mathcal{D}) - 2e(\mathcal{D}) + |\mathbf{x}_{+}| - |\mathbf{x}_{-}|.$$

Theorem If ξ is OT, then (M, ξ) has algebraic 0-torsion.

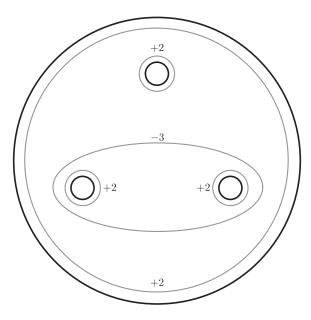
Proof There exists an open book (S, ϕ) with non-right-veering monodromy, and a basis of arcs *a* such that

$$\widehat{\partial}_{HF} \mathbf{y} = \mathbf{x}_{\boldsymbol{\xi}}$$

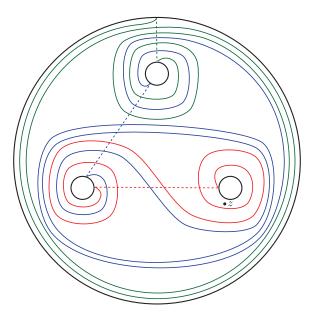
with one non-trivial index-1 curve, which is represented by a bigon domain $\mathcal{D}.$ Then

• $n_{\mathbf{y}}(\mathcal{D}) = \frac{1}{4} = n_{\mathbf{x}_{\xi}}(\mathcal{D}),$ • $|\mathbf{y}| = \mathbf{G} = |\mathbf{x}_{\xi}|,$ gives $J_{+}(\mathcal{D}) = 0.$

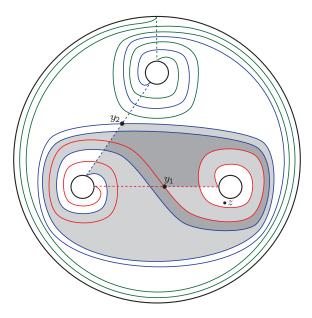
AN EXAMPLE



AN EXAMPLE



AN EXAMPLE



Need to show

- ${\scriptstyle \circ }$ J-independence, \checkmark
- arc basis independence, in progress
- $\circ\,$ stabilization invariance. $\checkmark\,{\rm given}$ arc basis independence

Question Can AT detect overtwistedness?

Question $AT \leq planar \ torsion$?

Thanks for your attention!