

(1) Prove that the map between the two Mayer-Vietoris sequences in the proof of Poincaré duality commutes up to sign.

$$\begin{array}{ccccccc}
H^k(U \cup V) & \longrightarrow & H^k(U) \oplus H^k(V) & \longrightarrow & H^k(U \cap V) & \longrightarrow & H^{k+1}(U \cup V) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
(H_c^{n-k}(U \cup V))^* & \longrightarrow & (H_c^{n-k}(U))^* \oplus (H_c^{n-k}(V))^* & \longrightarrow & (H_c^{n-k}(U \cap V))^* & \longrightarrow & (H_c^{n-k-1}(U \cup V))^*
\end{array}$$

In particular, specify what the signs are for each of the three squares. (You may convince yourself that the Five Lemma works even if the diagram commutes up to sign.)

(2) Let  $M$  be a countable disjoint union of oriented manifolds  $M_1, M_2, \dots$ .

- Prove  $H_c^k(M)$  is the direct sum  $\bigoplus_i H_c^k(M_i)$ .
- Prove  $H^k(M)$  is the direct product  $\prod_i H^k(M_i)$ .
- Prove that if the Poincaré duality map  $H^k \rightarrow (H_c^{n-k})^*$  is an isomorphism for each  $M_i$ , then it is an isomorphism for  $M$ .
- Prove that the map in the other direction,  $H_c^k \rightarrow (H^{n-k})^*$  is not an isomorphism in general.

(3) Compute the following using various long exact sequences.

- $H^k(M \setminus \{p\})$  in terms of  $H^k(M)$  for a connected manifold  $M$ .
- $H^k$ (Möbius strip).
- $H^k(S^1 \times M)$  in terms of  $H^k(M)$ .
- $H_c^k(S^n \times \mathbb{R}^m)$  and  $H^k(S^n \times S^m)$

(4) If a vector field  $X$  on an  $n$ -dimensional manifold  $M$  has an isolated zero at  $p$ , show that the index of  $-X$  at  $p$  is  $(-1)^n$  times the index of  $X$  at  $p$ . Conclude that  $\chi(M) = 0$  if  $n$  is odd.

(5) Prove that a closed 2-form  $\omega$  on  $S^2 \times S^2$  is exact if and only if  $\int_{S^2 \times \{p\}} \omega = \int_{\{p\} \times S^2} \omega = 0$  (for any  $p \in S^2$ ).

(6) Let  $\omega = (-ydx + xdy)/(x^2 + y^2) \in \Omega^1(\mathbb{R}^3 \setminus \text{z-axis})$ . For fixed  $p, q$  relatively prime positive integers, let  $\gamma: S^1 \rightarrow \mathbb{R}^3 \setminus \text{z-axis}$  be the  $(p, q)$ -torus knot

$$e^{i\theta} \mapsto ((\cos(q\theta) + 2) \cos(p\theta), (\cos(q\theta) + 2) \sin(p\theta), -\sin(q\theta)).$$

Compute  $\int_{\gamma} \omega = \int_{S^1} \gamma^* \omega$ .