

- (1) Let $\omega \in \Omega^1(M)$ be such that $\int_c \omega = 0$ for every closed curve c in M . Prove ω is exact (that is, $\omega = df$ for some f).
- (2) Let M be a connected manifold where every closed curve is smoothly contractible to a point (that is, for any curve $c: S^1 \rightarrow M$, there is a smooth homotopy $h: S^1 \times [0, 1] \rightarrow M$ with $h|_{\{0\} \times S^1} = c$ and $h|_{\{1\} \times S^1}$ constant.) Prove that $H^1(M) = 0$.
- (3) Define the cup product $\cup: H^k(M) \otimes H^l(M) \rightarrow H^{k+l}(M)$ by

$$[\omega] \cup [\eta] = [\omega \wedge \eta].$$

- (a) Prove it is a well-defined map (that is, it is exact if both are exact, closed if one is closed, and bilinear).
- (b) Prove $\alpha \cup \beta = (-1)^{kl} \beta \cup \alpha$.
- (c) If $f: M \rightarrow N$, $f^*(\alpha \cup \beta) = f^*(\alpha) \cup f^*(\beta)$.
- (d) Define the cross product $\times: H^k(M) \times H^l(N) \rightarrow H^{k+l}(M \times N)$ by

$$\alpha \times \beta = \pi_M^*(\alpha) \cup \pi_N^*(\beta),$$

(where π_M, π_N are the two projections). If $\Delta: M \rightarrow M \times M$ is the diagonal inclusion, prove

$$\alpha \cup \beta = \Delta^*(\alpha \times \beta).$$

- (e) If M, N are compact oriented, orient $M \times N$ by declaring $v_1, \dots, v_m, w_1, \dots, w_n$ to be positive basis for $T_{(p,q)}(M \times N)$ if v_1, \dots, v_m is a positive basis for $T_p M$ and w_1, \dots, w_n is a positive basis for $T_q N$ (this is called the product orientation). Each of the groups $H^m(M), H^n(N), H^{m+n}(M \times N)$ are canonically isomorphic to \mathbb{R} by integrating forms. Prove the following commutes.

$$\begin{array}{ccc} H^m(M) \otimes H^n(N) & \xrightarrow{\times} & H^{m+n}(M \times N) \\ \downarrow & & \downarrow \\ \mathbb{R} \otimes \mathbb{R} & \xrightarrow{a \otimes b \mapsto ab} & \mathbb{R} \end{array}$$

- (4) If $p, q \in \mathbb{R}^n$ are distinct points, compute the cohomology groups of $\mathbb{R}^n \setminus \{p, q\}$.
- (5) Suppose M is a compact oriented manifold whose boundary has two components $\partial_0 M$ and $\partial_1 M$, and let ι_0, ι_1 be the two inclusions. Let α be a $(p-1)$ -form with $\iota_0^* \alpha = 0$ and β be a $(n-p)$ -form with $\iota_1^* \beta = 0$. Prove

$$\int_M d\alpha \wedge \beta = (-1)^p \int_M \alpha \wedge d\beta.$$

- (6) Let dA denote the standard area form on $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$. For which values of n is the form $z^n dA$ exact?