

(1) Let M_n be the space of $n \times n$ real matrices, and let M_n^k be the subspace of all matrices of rank k . Prove that M_n^k is a submanifold of M_n . (Hint 1: Do the cases $k = n-1, n-2$ first. Hint 2: Fix some $k \times k$ minor and consider the subspace of M_n where this minor has non-zero determinant.)

(2) The n -dimensional torus T^n is defined to be $\mathbb{R}^n/\mathbb{Z}^n$, i.e., for any $x, y \in \mathbb{R}^n$, $x \sim y$ iff $x - y \in \mathbb{Z}^n$. Let $\alpha, \beta: \mathbb{R}^n \rightarrow \mathbb{R}$ be two nowhere zero functions such that (i) $\alpha(x) = \alpha(y)$ and $\beta(x) = \beta(y)$ if $x - y \in \mathbb{Z}^n$ and (ii) $\alpha(x)/\beta(x)$ is an irrational constant. Then the vector field

$$\alpha(x) \frac{\partial}{\partial x^1} + \beta(x) \frac{\partial}{\partial x^2}$$

on \mathbb{R}^n descends to a vector field X on T^n . Find all functions $f: T^n \rightarrow \mathbb{R}$ such that $Xf = 0$.

(3) An n -manifold is called parallelizable if it has n vector fields which are linearly independent at each point.

(a) Prove that S^3 is parallelizable.

(b) Prove that $S^1 \times S^2$ is parallelizable.

(In general, all orientable 3-manifolds are parallelizable, but that is slightly harder.)

(c) Prove that $S^1 \times S^n$ is parallelizable. (Hint: S^n is the unit sphere in \mathbb{R}^{n+1} , and \mathbb{R}^{n+1} is parallelizable.)

(4) Let M be a connected smooth manifold. Show that for any points $x, y \in M$, there is a diffeomorphism $f: M \rightarrow M$ such that $f(x) = y$.

(5) View S^n as the unit sphere in \mathbb{R}^{n+1} ; the restriction of the standard metric on \mathbb{R}^{n+1} makes S^n a Riemannian manifold. Consider the stereographic projection

$$x: U = S^n \setminus (0, \dots, 0, 1) \rightarrow \mathbb{R}^n, \quad (p_1, \dots, p_n, p_{n+1}) \mapsto \left(\frac{p_1}{1-p_{n+1}}, \dots, \frac{p_n}{1-p_{n+1}} \right).$$

Write down the metric on U explicitly as $\sum_{i,j} g_{ij} dx^i \otimes dx^j$ in terms of these local coordinates.