

(1) View S^2 as the unit sphere in \mathbb{R}^3 .

- Let $p_0 \in S^2$ be the point $(0, 0, 1)$. If $SO(3)$ is the special orthogonal group, define $f: SO(3) \rightarrow S^2$ by $f(A) = A(p_0)$. Prove that this is a smooth fiber bundle with fiber $SO(2) \cong S^1$.
- The tangent bundle T_*S^2 carries a Riemannian metric coming from the dot product in \mathbb{R}^3 . Let ST_*S^2 be its unit sphere bundle, which is a fiber bundle over S^2 , whose fiber over each point are the length-one tangent vectors over that point. Construct a diffeomorphism between ST_*S^2 and $SO(3)$ as fiber bundles over S^2 .
- Consider the Gauss map $S^2 \rightarrow G_2(\mathbb{R}^3) \cong \mathbb{RP}^2$. (Here $G_2(\mathbb{R}^3)$ is the Grassmannian of 2-dimensional planes in \mathbb{R}^3 .) Prove that this is the orientation double cover. (The Gauss map $S^1 \rightarrow G_1(\mathbb{R}^2) \cong \mathbb{RP}^1$ is *not* the orientation double cover, so explain what is different in this situation.)

(2) Let $f: M \rightarrow N$, and suppose (x, U) and (y, V) are coordinate systems around p and $f(p)$, respectively.

- If $g: N \rightarrow \mathbb{R}$, prove

$$\frac{\partial(g \circ f)}{\partial x^i}(p) = \sum_j \frac{\partial g}{\partial y^j}(f(p)) \frac{\partial(y^j \circ f)}{\partial x^i}(p).$$

(b) Prove that

$$f_*\left(\frac{\partial}{\partial x^i}|_p\right) = \sum_j \frac{\partial(y^j \circ f)}{\partial x^i}(p) \frac{\partial}{\partial y^j}|_{f(p)}.$$

and, more generally, express $f_*(\sum_i a^i \partial/\partial x^i|_p)$ in terms of $\partial/\partial y^j|_{f(p)}$.

(c) Show that

$$(f^* dy^j)(p) = \sum_i \frac{\partial(y^j \circ f)}{\partial x^i}(p) dx^i(p).$$

(d) More generally, express

$$f^*\left(\sum_{j_1, \dots, j_k} a_{j_1, \dots, j_k} dy^{j_1} \otimes \dots \otimes dy^{j_k}\right)$$

in terms of the dx^i .

(3) (a) Construct isomorphisms $\phi_V: V \rightarrow V^{**}$ for all finite dimensional vector spaces V so that for any linear map $f: V \rightarrow W$, the following commutes.

$$\begin{array}{ccc} V & \xrightarrow{f} & W \\ \phi_V \downarrow & & \downarrow \phi_W \\ V^{**} & \xrightarrow{f^{**}} & W^{**} \end{array}$$

(b) Prove that there does not exist isomorphisms $\phi_V: V \rightarrow V^*$ for all finite dimensional vector spaces V so that for any linear map $f: V \rightarrow W$, the following commutes.

$$\begin{array}{ccc} V & \xrightarrow{f} & W \\ \phi_V \downarrow & & \downarrow \phi_W \\ V^* & \xleftarrow{f^*} & W^* \end{array}$$

(c) Construct isomorphisms $\phi_V: V \rightarrow V^*$ for all finite dimensional inner-product vector spaces V so that for any linear map $f: V \rightarrow W$ between inner product spaces that preserves inner products, the following commutes.

$$\begin{array}{ccc} V & \xrightarrow{f} & W \\ \phi_V \downarrow & & \downarrow \phi_W \\ V^* & \xleftarrow{f^*} & W^* \end{array}$$

(4) Prove that the tangent bundle and the cotangent bundle of a manifold are always isomorphic (although not canonically).