

- (1) Construct a smooth manifold structure on the Grassmannian  $G_n(\mathbb{R}^k)$ , the set of all  $n$ -dimensional subspaces of  $\mathbb{R}^k$ . Construct the canonical  $n$ -dimensional vector bundle over it (as a smooth vector bundle, not just the fiber over each point).
- (2) Let  $M$  be a compact  $n$ -dimensional manifold and  $f: M \rightarrow \mathbb{R}^n$  a smooth map. Prove that  $f$  is singular (that is,  $df$  has rank less than  $n$ ) somewhere.
- (3) A Riemannian structure on a smooth manifold is a choice of a positive definite inner product  $\langle \cdot, \cdot \rangle_p$  on each tangent space  $T_p M$ , which is smooth in the sense that whenever  $X$  and  $Y$  are two smooth vector bundles,  $\langle X, Y \rangle$  is smooth. Prove that there is a Riemannian structure on every smooth manifold. (Hint: Use partition of unity.)
- (4) Prove that there are exactly two isomorphism classes of line bundles (one-dimensional vector bundles) over  $S^1$ . Which of them is the tangent bundle  $T_* S^1$ ?
- (5) If  $A \subset M$  is a closed submanifold and  $U \supset A$  is any open neighborhood, and  $f: A \rightarrow \mathbb{R}$  is a smooth function, prove that there is a smooth function  $g: M \rightarrow \mathbb{R}$  with  $g|_A = f$  and  $g = 0$  outside  $U$ .
- (6) Consider the maximal atlas on  $\mathbb{R}$  containing the function  $t \mapsto t^3$ . Prove that it produces a smooth structure on  $\mathbb{R}$  that is distinct but diffeomorphic to the standard smooth structure on  $\mathbb{R}$  (the standard smooth structure comes from the maximal atlas containing the function  $t \mapsto t$ ).