- (Q-1) Show that for $M = S^2$, the Weingarten map $L = \pm Id$ by computing L_{ik} in a coordinate patch and raising an index.
- (Q-2) Show that for $M = S^1 \times (0,1)$, L can be represented by the matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
.

- (Q-3) Find L for the torus from (HW-4, Q-1).
- (Q-4) Prove that $II(X,Y) = \langle L(X),Y \rangle = \langle X,L(Y) \rangle$ for all $X,Y \in T_pM$.
- (Q-5) Find the matrix (L_i^i) for a surface of revolution.
- (Q-6) Let $f: V \to U$ be a surface of revolution. How are the $\overline{L}^{\alpha}_{\beta}$ related to the L^{i}_{j} ?
- (Q-7) Let $\gamma(s) = x(\gamma^1(s), \gamma^2(s))$ be a unit speed curve on a surface. Note (T, S, n) gives a positive orthonormal frame, with $n(s) = n(\gamma^1(s), \gamma^2(s))$ viewed as a function of s. Prove the following analogues of the Frenet-Serret equations:

$$T' = II(T,T)n + \kappa_g S$$

$$N' = -\kappa_g T + II(T,S)n$$

$$S' = -II(T,T)T - II(T,S)S.$$

- (Q-8) Find the Gaussian and mean curvatures of the plane, sphere, and the torus.
- (Q-9) Prove $H^2 \geq K$. When does equality hold?
- (Q-10) Let $X, Y \in T_pM$ be orthogonal vectors. Prove

$$H = \frac{1}{2} \big(II(X, X) + II(Y, Y) \big).$$