- (Q-1) Prove that the meridian of a surface of revolution is a geodesic. Also determine which circles of latitude are geodesics.
- (Q-2) Let M be a surface and Π a plane that intersects M in a curve γ . Show that γ is a geodesic if Π is a plane of symmetry of M, that is, the two sides are mirror images.
- (Q-3) Let γ be a straight line on a surface. Prove that γ is a geodesic.
- (Q-4) Suppose x is a coordinate patch with $g_{11} \equiv 1$ and $g_{12} \equiv 0$. Prove that the u^1 -curves are geodesics.
- (Q-5) If M is a surface of revolution and γ is a geodesic, prove that $r \cos \beta(s)$ is a constant where $\beta(s)$ is the angle between $\gamma'(s)$ and the circle of latitude (of radius r) through $\gamma(s)$.
- (Q-6) Let $\gamma(t)$ be a geodesic not parametrized by arc length. Prove, for each i=1,2,

$$\frac{d^2\gamma^i}{dt^2} + \sum \Gamma^i_{jk} \frac{d\gamma^j}{dt} \frac{d\gamma^k}{dt} = -\frac{d\gamma^i}{dt} \frac{d^2t}{ds^2} \big(\frac{ds}{dt}\big)^2.$$

- (Q-7) Consider the patch x(u,v)=(u,v,uv). Show that the non-unit speed curve $\gamma(t)=(t,-t,-t^2)$ is a geodesic, when parametrized by arc length.
- (Q-8) Let $\alpha(s) = (f(s), g(s))$ be a simple unit speed plane curve. Let x(s,t) be the surface x(s,t) = (f(s), g(s), t). Let β be a fixed constant, and let $\gamma(\theta) = (f(\theta), g(\theta), \theta \tan \beta)$. Prove γ is a geodesic. (Note, θ is not the arc length.) Prove γ is a helix.

1

- (Q-9) Find as many geodesics as you can on the surface $x^2 + y^2 z^2 = 1$.
- (Q-10) Find as many geodesics as you can on the patch $x(u,v) = (u, v, u^2 v^2)$.