- (Q-1) Prove $\kappa^2 = \kappa_n^2 + \kappa_g^2$. (Q-2) Show that the matrix (L_{ij}) for the surface of revolution from (HW-4, Q-2) is

$$\frac{1}{\sqrt{\dot{r}^2+\dot{z}^2}}\begin{pmatrix} \dot{r}\ddot{z}-\ddot{r}\dot{z} & 0\\ 0 & r\dot{z} \end{pmatrix}.$$

- (Q-3) Prove that for a surface of revolution $\det(L_{ij}) \equiv 0$ if and only if each meridian is a straight line.
- (Q-4) Let $\overline{L}_{\alpha\beta}$ be the corresponding expression for L_{ij} in a coordinate system V, and let $f: U \to V$ be a coordinate transformation. Prove

$$L_{ij} = \pm \sum \overline{L}_{\alpha\beta} \frac{\partial v^{\alpha}}{\partial u^{i}} \frac{\partial v^{\beta}}{\partial u^{j}}.$$

- (Q-5) For the patch $x(u,v)=(u,v,u^2+v^2)$ find the normal curvature of the curve $\gamma(t)=x(t^2,t)$ at t=1.
- (Q-6) Consider the plane as the simple surface x(r,s)=(r,s,0). Prove that the geodesic curvature of a curve in the plane is its plane curvature.

1

- (Q-7) The sphere is a surface of revolution. Find the geodesic curvature of a circle of latitude.
- (Q-8) Let γ be a curve on a sphere. Prove that κ_n is constant.
- (Q-9) Let γ be a curve on a sphere with κ_g constant. Prove γ is a circle.
- (Q-10) Does the sign of the geodesic curvature have any meaning in a coordinate patch? In a surface?