- (Q-1) Show that $\alpha(s) = \frac{1}{13} \left(5\cos s, 8 13\sin s, -12\cos s \right)$ is a unit speed curve and compute its Frenet-Serret apparatus.
- (Q-2) Show that $\alpha(s) = \left(\frac{(1+s)^{3/2}}{3}, \frac{(1-s)^{3/2}}{3}, \frac{s}{\sqrt{2}}\right)$ is a unit speed curve and compute its Frenet-Serret apparatus.
- (Q-3) Let $\alpha(s)$ be a curve in the (x,y)-plane. Prove that if $\kappa \neq 0$ then $\tau = 0$. (Hint: First prove $B = \pm (0,0,1)$.)
- (Q-4) $\alpha(s) = (x(s), y(s), 0)$ be a unit speed curve. Prove $\kappa = |x'y'' x''y'|$.
- (Q-5) Let $\alpha(s)$ be a unit speed curve with $\kappa \neq 0$. Prove

$$\tau = \frac{[\alpha', \alpha'', \alpha''']}{\langle \alpha'', \alpha''' \rangle}.$$

- (Q-6) Find the equation of the normal plane to $\alpha(t) = (e^t, \cos t, 3t^2)$ at t = 1. (Note: t is not the arc length.)
- (Q-7) Let $\alpha(s)$ be a unit speed curve with $\kappa \neq 0$. Find a vector w(s) such that $T' = w \times T$, $N' = w \times N$, $B' = w \times B$.
- (Q-8) Prove that $\alpha(s)$ is a straight line if and only if all its tangent lines are parallel.
- (Q-9) Let

$$f(t) = \begin{cases} e^{-1/t^2} & \text{if } t \neq 0\\ 0 & \text{if } t = 0. \end{cases}$$

You may assume f is C^{∞} with all higher derivatives 0 at 0. Let $\alpha(t)$ be given by

$$\alpha(t) = \begin{cases} (t, f(t), 0) & \text{if } t \le 0 \\ (t, 0, f(t)) & \text{if } t > 0. \end{cases}$$

1

Prove α is regular and C^{∞} . Show $\kappa = 0$ at t = 0. (Note: t is not the arc length.)

(Q-10) Find a unit speed curve $\alpha(s)$ with $\kappa(s) = 1/(1+s^2)$ and $\tau = 0$.