- (Q-1) Let $\alpha(\theta) = (e^{\theta} \cos \theta, e^{\theta} \sin \theta, 0)$. Prove that the angle between α and T is constant.
- (Q-2) Let $\alpha(t)$ be a regular curve. Suppose there is a point $a \in \mathbb{R}^3$ such that $\alpha(t) a$ is orthogonal to T(t) for all t. Prove that $\alpha(t)$ lies on a sphere. (Hint: what is the center of the sphere?)
- (Q-3) Consider the function $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ by $\alpha(t) = (t^2, t^3, 0)$. Prove α is C^1 but not regular. Show that the image of α has a sharp corner by graphing α .
- (Q-4) Let $g:(0,\infty)\to(0,1)$ be given by $g(r)=r^2/(r^2+1)$. Is this a reparametrization?
- (Q-5) Find the arc length of the circular helix $\alpha(t) = (r \cos t, r \sin t, ht), 0 \le t \le 10$.
- (Q-6) Reparametrize the circular helix $\alpha(t) = (r \cos t, r \sin t, ht)$ by arc length.
- (Q-7) Find the arc length of $\alpha(t) = (2\cosh 3t, -2\sinh 3t, 6t), 0 \le t \le 5$.
- (Q-8) Reparametrize the curve $\alpha(t) = (e^t \cos t, e^t \sin t, e^t)$ by arc length.
- (Q-9) Prove that the following is a unit speed curve.

$$\alpha(s) = \frac{1}{2} \left(s + \sqrt{s^2 + 1}, (s + \sqrt{s^2 + 1})^{-1}, \sqrt{2} \ln(s + \sqrt{s^2 + 1}) \right).$$

(Q-10) Let $\alpha(t)$ be a regular curve with $|d\alpha/dt| = a$, where a is a fixed positive constant. If s is the arc length measured from some point, prove t = c + s/a for some constant c.

1