Differential Geometry of Curves and Surfaces by Do Carmo.

Elements of Differential Geometry by Millman and Parker.

(The notation and conventions are different in the two books. In class, we will follow conventions from Do
Carmo and notation from Millman and Parker.)

Background.

(1) Derivative. Given differentiable R™ EN R™ and a point a € R™, the derivative df, is a linear map
R™ — R™. If we fix coordinates z1,...,Z,, and y1,...,yn, that fixes a basis, and can represent df, by
a n X m matrix whose entries are Jy;/0x;. So df : R™ — R™" is the derivative function.

(2) C° means continuous. If df exists and df : R™ — R™" is C*~1, then f is C*. Inductive definition. C*
means k times differentiable and k' derivative is continuous. C'*° is smooth, infinitely differentiable.

(3) Chain rule. Consider R™ NS TR RP, and fix coordinates 1 ..., Tm, Y1 ---,Yn, 21, - - -, Zp, and a starting
dgf(a
point @ € R™. Then a — f(a) — g(f(a)), and we have linear maps R™ Yo g “ RP. Then as

linear maps d(g o f)a = dgyf(a) © dfa. As matrices d(g o f)a = dgf)dfa. In terms of matrix entries,

Oz _ N~ 9z OYj : ; ; ; Bz Oy;
o =i 5> .. - Double index notation, latter is written > Or e

Basic curves in 3D.

(1) Fix interval I C R, open or closed (could be I = R) Curve a: I — R3, different from its image. Think
of particle traveling in space; image is the path traced out.

(2) Velocity o = da/dt: I — R3. We view a(t) as a point in R3, but o/(¢) as a 3D vector, drawn starting
at a(t). This is also the tangent vector to the curve. Speed is length of the vector |o/|.

(3) To avoid sharp corners, we will assume curves are regular, that is o/(t) # 0Vt. The path \/ can be
the image of a C* (smooth) path, but it has a sharp corner, and doesn’t look smooth. If we impose
regularity, then well-defined tangent direction at each point, and so no more sharp corners.

(4) For regular curves, unit tangent T'(¢) = o'(¢)/|a/(t)], unit vector in the tangent direction. Velocity o’
was extrinsic (depends on how a particle travels a given path), but T'(¢) is clearly intrinsic (depends only
on the path and direction on travel).

(5) Reparametrization. Consider two intervals I,.J, and h: I — J a bijection, so that both h and h~! are
C3. Then if a: I — R?® and f: J — R? are related by a = B0 h (equivalently 3 = oo h~1), then one is
a reparametrization of the other. Both of them have the same image, represent the same path in space,
but traveled differently (with different speed, etc).

(6) Reparametrization again, h: I — J, g: J — I, goh = Id;, hog = Idy, both C*. If a, 3 related by
reparametrization, takes regular curves to regular curves. Clearly C* to C*. %Ll = %b(a)%‘av so just
need to show %LL # 0. Chain rule again on ho g =1d;.

(7) Alternate description of reparametrization. h: I — J onto, h € C*, and h’(t) # 0Vt. Injective by Mean
Value Theorem; indeed two cases, b’ > 0 or h’ < 0 (strictly increasing or strictly decreasing). So if
g=h"', why g € C*?

(8) Review Inverse Function theorem f: R™ — R™. If df, (n X n) non-singular, then locally has inverse,
and inverse is also C*. In case n = 1 (like now), has global inverse (as we saw), but for general n, not.
Example: C — C,z + €*, so f: R? — R2 (z,y) +— (e”cosy,e”siny), compute |df| = ¥ # 0, but no
global inverse since not injective.

(9) If two curves «,f3, related by reparametrization Im(«) = Im(f), but possibly traveled with different
speeds. If A’ > 0, then same orientation (direction of travel), otherwise opposite.

(10) What about converse? If two regular curves have same image, they are related by reparametrization,
since regular curves have a unique canonical reparametrization.

Arc length parametrization.

(1) Assume regular curve . Arc length. Consider starting point a(tg). Arc length is distance traveled from
to to t, integral of speed s(t) = ftto |/ (t)|dt. This is intrinsic, depends only on the starting point, and
the direction of travel, independent of parametrization.

(2) Say h = s is the arc-length parametrization, and J = Im(h). Why is h: I — J a reparametrization? If
g is the inverse, define the arc-length parametrization 8(s) = a o g(s).
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n? 48 — dadg _ dojdh _
Y ds T dtds T dt/! dt —
% / |§—‘t¥ = T, the unit tangent. In particular, unit speed. So arc-length parametrization is canonical:

start at the starting point, and travel with unit speed in the given orientation.

(4) Example. Consider the curve a(t) = (rcost,rsint, ht). Assume r,h > 0 constants. Do arc length
reparametrization of helix. Useful variable w = ﬁ

(5) Draw (rcost?,rsint?, ht?). Different image from the helix. Sharp turn, not regular at ¢t = 0.

(6) Draw (rcost®,rsint®, ht®). Same image as the helix, but still not a reparametrization since not regular
at t = 0. The change of variable functions are ¢3 (which is C*°) and ¢'/? (which is not C1).

(7) Although arc length parametrization always possible for unit speed curves, very hard in practice. Con-
sider the parabola y = ?/2, find arc length parametrization starting at (0,0). First find regular
parametrization a(t) = (t,t2/2), then s(t) = fg VI+82dt = L(tvV1+ 2 +In(t+v1+¢2)). (Dot = tané,
then integrate sec® @ by parts.) Then arc length parametrization is a(t(s)), but impossible to write down
the inverse function ¢(s).

(3) What is the velocity (which was extrinsic) under arc-length parametrizatio

Curvature and torsion.

(1) Nevertheless, only consider unit speed curves «(s) from now. Velocity is unit tangent: o/(s) = T'(s).
Acceleration a(s) = T"(s) measures rate of change of T, so change in the direction of travel. So
curvature k(s) = [T'(s)].

(2) If k(s) # 0, then N(s) = T"(s)/k(s), the direction of the rate of change. So T' = kN. Note, N only
defined when curvature is non-zero.

(3) N is perpendicular to T, since for any unit vector v, v’ is perpendicular to v (differentiate v - v).

(4) Do helix example. x = rw? = @, and N points inwards towards the axis. Special case, h = 0, circle
of radius r. Curvature is 1/r, smaller circles have larger curvature.

(5) From now on assume £(s) # 0Vs. Needed to make sense of N. Then we get a right-handed orthonormal
basis T, N, B, where B =T x N; explain.

(6) Orthonormal frame, right-handed (positive) vs left-handed (negative). (4,4, k), (k,7,4), (j, k,¢) are posi-
tive. Cyclic (even) permutations. Form a basis. Any vector can be written uniquely, and the coefficients
are given by dot products.

(7) Let’s keep differentiating. N’ is perpendicular to N, so N’ = aT + bB. Since N, T orthogonal, a = —k.
Let b = —, torsion. (Osculating plane spanned by T, N; the plane spanned by N, B is normal plane,
and the plane spanned by T, B is rectifying plane. 7 is the rate of rotation of B in the normal plane.)

(8) Omne more derivative: B’ = 7N. (B’ perpendicular to B, and its coefficient at N,T is negative of the
coefficients of N',T" at B.)

(9) The data (k,7,T, N, B) called Frenet-Serret apparatus. Very important to remember, only considering
the Frenet-Serret apparatus for unit speed curve. If not-unit speed, then reparametrize (which might be
hard) and then consider this data. Moreover, N, B, 7 only defined if x # 0.

(10) Calculate (x,7,T, N, B) for the helix (rcost,rsint, ht), T = hw? = TQJFL}LQ

(11) If kK = 0 on an interval, then T constant, so linear. If kK = 0 at an isolated point, this story not valid,
and the osculating plane can change drastically, «(t) = (¢, eil/tz,O) or (t,0, efl/t{z).

(12) If kK > 0,7 = 0 on an interval, then B constant, so particle travels in the plane perpendicular to B.

(13) Frenet-Serret equation

T’ 0 « O T
Nl|l=|- 0 —7 N
B’ 0O 7 O B

Proof: Decompose a vector along orthonormal basis by dot products. Treating T', N, B as row vectors.
So the equation is 3 x 3 = (3 x 3)(3 x 3). Also note the matrix is skew-symmetric.
Fundamental theorem of curves.

(1) Picard’s theorem. I C R open interval around 0, ¢ € R®; A: R"™ x I — R", uniformly (in time) bounded
partial derivatives wrt space coordinates. Then unique a: I — R™ with a(a) = ¢ and da/dt = A(a(t),t).
Particle traveling in R™, initial condition specified, and velocity specified depending on its position and
time.

(2) Counterexample 2’ = /3, 2(0) = 0. No solutions for ¢ < 0, two solutions z = #+/(2t/3)3 for t > 0.

(3) Outline of proof; iterations of integrals. ¢, (t) = ¢+ fat A(dn—1(t),t)dt.
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(4) Fundamental theorem of curves. Any regular curve with x > 0 is uniquely determined by s and 7.
More precisely: 0 € I C R (I open interval), & € C1(I) with &(s) > 0Vs, 7 € C°(I), 9 € R3, D, E, F
right-handed orthonormal basis of R®. Then unique C? unit-speed curve a: I — R3 with «(0) = zg,
(T'(0),N(0),B(0)) = (D, E, F), k(s) = R(s), and 7(s) = 7(s).

5) Proof. Picard uniquely specifies the frame T, N, B. The function A: R? x I — R? is given b
y g Y

e 0 E(S) 0 zlzgzg,
A(T17T27T37N17N27N37BlaB27BS7S): _E(S) 0 _?(S) Nl N2 NS
0 7(5) 0 El EQ Eg
So satisfies the Lipshitz condition. For instance
0 0 0
0A
0Ty 0 00

Since %, 7 € C°, bounded (on any closed interval in I, which is enough). Define a(s) = zo + [; T(s)ds.

m

(6) Show T, N, B positive orthonormal. Consider Picard’s theorem again with six variables T - 7, =,y
{T, N, B}. Uniqueness of solution forces orthonormality. Positivity is forced by continuity of [T, N, B]—
triple scalar product.

(7) Immediate that « is unit speed. To show o € C3, need T € C?, so KN € C*!, which we have. (This
is exactly where we needed & to be C'—to ensure the curve is C3, which is needed in order to define
torsion.)

(8) Easy to show T =z for x =T, N, k, B, T in this order.

(9) If 7, K > 0 constant, then circular helix. Proof. Just show it satisfies the equation, with r =
h = =7=. (7 <0 right-handed, 7 > 0 left-handed, 7 = 0 circle.)

Non-unit speed curves.

Kk
K2 -‘,—7'2 I

(1) Regular but not (necessarily) unit speed curve, a(s(t)). Derivatives wrt s are prime, wrt ¢ are dots.
Chain rule, & = 2’$. Let speed v = § = |&|. Running example a(t) = (¢,t2,t3).
2) Rest follows by just differentiating & = vT. (T = &/v.)

(2)
(3) & =T +vT =0T +v?kN, & x & = v3kB. (k= |d x d|/v3, B=dax d/sv®, N=BxT.)
(4) & =0T + vveN + (V26)N — v362T — v¥k7B, [&, &, &] = —(v3k)?7. (1 = —[a, &, &]/(v3K)2.)
(5) Frenet-Serret equations.
T v 0 0 T’ 0 wxv O T
N|=10 v 0[N ]|]=[-k0 0 —mv]||N
B 0 0 w B’ 0 7v O B

Rotation index.

(1) Define T, n for plane C? curves, by setting b = kandn=bxT. Explain n = £N, if the latter is defined,
and explain the sign. (n is obtained by rotating T by 90°.) Define planar curvature kp by 7' = kpn,
which can be negative (turning left vs turning right.) kp measures the rate of change of direction of T.

(2) More precise version of the previous statement. Write T'(s) = (cos(6(s)),sin(6(s))), explain how to make
sense locally. If T'(s) is C, so is 0(s). Then kp(s) = 0'(s).

(3) Homework problem. Find curve with k(s) = H%’ 7(s) =0,20=0, (D,E,F) = (i,4, k). Planar motion
in xy plane. T(s) = (cosf(s),sin(0(s))), and k(s) = kp(s) = €. (Note x(s) never zero, so binormal B
throughout k constant, same as b.)

(4) After fixing 6(0), globally define 6(s) by cutting interval into small pieces where 6(s) doesn’t change by
more than 180° (points up, down, right, or left, only). Alternate definition 6(s) = 6(0) + [ k(s)ds.

(5) Periodic (closed) curve, a(s + L) = «(s)Vs, period is smallest such L (which is length of the curve
a: [0, L] — R% Index of periodic curve ;- fOL kds.

(6) Index is total change of 6 divided by 27 since 6’ = kp. Interesting index examples: circle oriented both
ways, clover leaf.

(7) Simple closed curve, no self-intersection, a(s) # «(t)Vs # t € [0, L). Total index is +1.

(8) Jordan curve theorem (very hard to prove). Complement of simple closed curve has outside (the non-
compact region containing oo) and inside.
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(1)

Simple closed curve is positively oriented if the inside region is on the left.

Index of positively oriented simple closed curve is 1. After translating if necessary, let a(0) be the lowest
point of the curve. That is, if a(s) = (z(s),y(s)), it is minimum of y(s), defined since [0, L] is compact.
The tangent there is horizontal since 3'(s) = 0.

Define (u,v) maps to the angle of the vector a(v) — a(u) on the triangle 0 < u < v < L. Limiting case
when u = v is the tangent line. This angle well-defined up to multiples of 27, but can be well-defined
globally by cutting into small triangles, and fixing a starting value, say (0,0) — 0. Need triangle is
simply connected.

The theta difference along the hypotenuse is 27 times the index, but along but along each of the other
two sides is 7, since a(0) = a(L) was the lowest point, so can never turn more than 7. (That is,
(0,L) = 7 and (L,L) — 27.)

Coordinate patches.

Just like curves were function a: I — R3, surface is a function x: U — R3, where U is an open set in
R2,

What is an open set in R"? For every point p € U, there exists some r > 0, so that B,.(p) C U.
Informally, does not contain any point on the boundary. Open intervals are open sets in R. Complement
of open is called closed. (Lots of sets are neither open nor closed.)

Checking whether some function is C* is local. So makes sense to talk about whether z is C*. We
assume z € C*, and k > 1 (usually k > 3).

We also assume z is injective. That is, for simple surfaces like this (also called coordinate patches), do
not allow self-intersections.

Finally a regularity condition, just like we assumed o’(s) # 0 for curves to have a well-defined unit
tangent T. Let u',u? be the coordinates on R2, and let z; = % (which are 3-dimensional vectors).
We assume x1 X x5 # 0 everywhere. That is, not only are each x; and zo non-zero, they are linearly
independent.

Geometric meaning. Hold wy constant, change uj, get a straight line in U, produces a curve in the
surface, its tangent vector is x1. Similarly, hold w; constant, change wus, get a different curve, its tangent
vector is us. These curves are called parametric curves. The regularity condition says x1 and xo are
linearly independent (always draw them starting at xz(p)), that is, they span a 2-dimensional plane,
which is called the tangent plane at p (or z(p)). What is the unit normal? (n = ﬁiile )

Example is a graph. Let f: U — R, f € C*. Then graph is a function U — R3, (u',u?)
(u',u?, f(u',u?)). Why is this a simple surface? Check C*, injective, and the regularity condition.
Example of an example, graph of f(u!,u?) = /1 — (u!)2 — (u2)2. What is the domain? Unit disk, but
we want open domain, so open unit disk. The surface is the upper hemisphere.

Another way to visualize the sphere, spherical coordinates. Consider the surface

(0,6) — (cos b cos ¢, sin b cos ¢, sin ).

What are the parametric curves? Latitudes (circles, usually not great) and longitudes (half great circles).
We need injective, so what is a good domai? (0,27) x (—7/2,pi/2). What is the image? (Unit sphere
minus the poles, as well as the prime meridian.) Finally, check regularity: |zg X z4| = cos¢ > 0. What
is unit normal? Can find it geometrically as well since it points outwards.

Next we study reparametrization. Completely analogous to curves. Consider surfaces z: U — R? and
y: V — R3. Reparametrization are C* functions h: U — V,g: V — U, with ho g = Idy,go h = Idy
and z = y o h (equivalently y = z o g).

For curves, it was equivalent to saying h'(s) # 0Vs. What about dh,, for p € U? What is dh,? Linear
map R? — R2, represented by 2 x 2 matrix (%) since we have basis. This matrix is called the Jacobian.
It is non-singular. Has an inverse df,(,) by chain rule, dgy ) o dh, = 1d.

But unlike for curves, this is not enough to check, since inverse function theorem is only local. So to
check reparametrization, need to check h is bijective (with inverse say g), h € C¥, dh, is non-singular
everywhere. No need to check g € C¥, since that is a local statement and follows from inverse function
theorem. (This will actually be automatic if both x and y are regular, by Implicit function theorem.)
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Also unlike curves, no canonical parametrization. So to define any invariants of surfaces, first need to
parametrize, then define it in terms of that parametrization, and then check independence of parametriza-
tion.
We have so far: Tangent plane, unit normal. Check independence under reparametrization. Draw picture
of z; = % and y; = % on the same surface. Why is plane spanned by v, y> same as plane spanned
by 1,227 How are they related?
Since y = x o g, chain rule,
dy dx ou’ o’
ovt ouJ Ovt ovt
(in the double index summation notation). In terms of matrices 2 x 3 = (2 x 2)(2 x 3),
Lui Lu;
(v1 w2) = (o2 w2) | 902 Dk
vt 9v?
To check same tangent plane, just need to check same normal vector. So
y1 X yo = det(J) (a1 X 2).
Recall det(J) # 0, so simultaneously checks that the condition of regularity is preserved under transfor-
mation (x; X xo # 0 implies y; X y2 # 0), as well as, unit normal preserved up to sign (depending on
whether det(J) > 0 or < 0), and hence the tangent plane is also preserved.
What is a tangent vector X (usually capital letters)? By definition it is a linear combination of z; and
9. To preserve double index notation, write X = ZZ X'z,
Alternate description, tangent vectors are velocity vectors of curves through that point. That is, fix
p € U, let ¢ = z(p) be its image on the surface, and let a: I — U be a curve through p (with «(0) = p).
Then composite z o a is a curve on the surface through g. We claim, the velocity of this curve is a
tangent vector. Chain rule,
d(xoa)‘ Ox | du1| n Ox | du | du! n du?
——|t=0 = —|t=0 + =5 |p——|t=0 = T1— + T2 ——
dt "0 out At 0T w2 ar 0T T ar T T dt
is a linear combination of x; and xs.
Surfaces.

Definition of C* surface, example is S? C R3. Recall simple surface, but S? cannot be covered by a
single coordinate chart. So need a bunch.

Digression about topology. Need a notion of open sets, example R™. Subset of a topological space is a
topological space. Do examples of open sets in $2. One extreme example is whole S? is open in S2, but
not in R3.

Surface is a subset S C R3, and a collection (could be infinite, indeed usually uncountable) of coordinate
charts z: U — R? (which are all C¥, injective, regular), satisfying the following.

Each z maps to S (that is z(U) C S), and the map z: U — S is a homeomorphism. (This means
x71: 2(U) — U is also continuous.)

For each p € S?, there is some coordinate chart @ with p € z(U). That the coordinate charts cover the
whole surface.

Finally, the different charts are compatible. So if we have two charts z: U — S, y: V — S, we get a
bijection y " toxz: 27 (x(U)Ny(V)) — y~ 1 (x(U)Ny(V)). We require this to be a C* reparametrization,
that is, each of the maps y~' oz and ! oy are C*.

This compatibility allows us to define tangent space 7),5—a two dimensional vector space—at each point
p € S (usually drawn at p). Choose a coordinate chart x that covers p (which exists), define tangent
space for x as the linear span of x; and x5, and then check it is well-defined, that is, independent of
choices. So if y is another coordinate chart also covering p, then the span of y; and ys is the same space.
That is true, since they are reparametrizations of z(U) Ny(V).

Example of surface: S2. We have already seen many parametrizations of S?, like upper hemisphere
(vecall, x(ul,u?) = (u',u?, /1 — (u})2 — (u2)2) or spherical coordinates. Can cover S? with six such
hemispheres, but let’s do something different.
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Stereographic projection from the unit sphere minus north pole (0,0,1) to the plane (draw picture);
inverse is a coordinate chart. Equation of straight line from (v!,v2,0) to (0,0,1) is (tv!,tv? 1 —¢), so
when on sphere t = W, so coordinate chart given by

20! 202 1— (vh)? - (112)2)
()2 + (022417 (v1)2 4+ (12)2+17 (v1)2 + (v2)2 +1

which is C'*° since we are not dividing by 0.

y(vl’ U2) = (

So x and y cover S2, so just need to check overlap condition. The domain and range of y~! o z are the
punctured disk and complement of unit disk.
Write down y~! o, (u',u?) — ( T % ), (figure out ~* by drawing the

1—/1—(u1)2—(u?)2” 1—4/1—(ul)2—(u2)?
straight line (¢p,tq,1 +t(q¢ — 1)) from (0,0,1) to the point (p,q,r) on the sphere), from punctured disk
1

and its inverse 271 oy, (v!,v?) ((vl)zfz’ﬂ)gﬂ, (v1)2f€v2)2+1)’ from the complement of the disk. Check
both are C>, so reparametrization, so defined S? as a surface.

First fundamental form.

First recall linear map, V' = R" is n-dimensional vector space (for us, n = 2), f: V — V is linear if
FOu+ pv) = Af(uw) + pf (v)VA, p,u, v. If we choose a basis {z1,...,z,}, then f determined by its value
on x;, so if f(z;) = > ff xj, then f is uniquely determined by matrix ( ff ). Conversely, a matrix A
determines a linear map v — Av.

Bilinear map is something completely different. Map g: V' x V' — R which is linear in each factor,
g(Au + po,w) = Ag(u,w) + pg(v,w) and similarly. If we choose a basis, also determined by a matrix
gij = g(x;, zj). Conversely, matrix B determines a bilinear map (u,v) — u? Bv.

Matrix represents bilinear form if both indices subscripts, but a linear map if one index subscript one
index superscript.

Symmetric, positive definite (g(v,v) > 0Vv # 0) bilinear map is called an inner product. Corresponding
matrix is symmetric and positive definite.

Back to surfaces. Given a surface S and point p € S, have defined 2-dimensional tangent space T,S.
One of the first examples of an abstract vector space, does not come with natural basis. (We can choose
a coordinate chart z, and will get a basis x1,x2, but some other coordinate chart will give some other
basis.) Nevertheless has an inner product, first fundamental form, g(u,v) = (u,v) = I(u,v) = u - v.
We defined without parametrizing, so property of surface (independent of parametrization). If we fix a
patch, g represented by matrix (g;;) where g;; = z; - x;.

Example S = R?, parametrize as x(u',u?) = (u',u?), g is the identity matrix. Identical for the cylinder
z(0,z) = (cosf,sin b, z).

The sphere S? with spherical coordinates z(6, ¢) = (cos 6 cos ¢,sin cos ¢,sin¢), 0 < § < 2w, —7/2 <

o <7/2. We get
cos’¢ 0
=(" 1)

We are studying local properties of surfaces. Local means depends only on a neighborhood, like C*,
tangents, normals, curvature, most things in the course so far. Indeed only global thing so far is total
index of simple closed curves. Property means independent of parametrization. Example, tangent space
T,S, normal £n, first fundamental form g. When did we check g is independent of parametrization?
(g was defined without using parametrization.) Of course, if we choose a parametrization, g is given a
matrix (g;;) with g;; = ; - ¢, and if we change parametrization, we will get a different matrix which is
related to this by multiplying with J* and J on two sides.

Local properties are classified into intrinsic or extrinsic. Intrinsic means can access them if you are a two
dimensional creature living on the surface, cannot look up. (In Flatland, the protagonist is a triangle
living in R?). So T,S is intrinsic, since tangent vectors are just directions of travel, and length is how
fast you are traveling. So is g, since u - v = |u||v|cosf, and we can measure lengths and angles. But
normal is extrinsic, since we cannot look up.

Technical definition of intrinsic, anything that depends only on g (since lengths and angles are all that
we can measure); everything else is extrinsic. So how do we prove +n is extrinsic?
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1 1

Parametrize cylinder, z(u',u?) = (cosu!,sinu’,u?), compute first fundamental form, same as that of
plane. So locally looks the same (isometric) to the plane. (Globally different, since on the cylinder you
can keep travelling in certain directions and come back.) But for the plane n is constant, but for the
cylinder n changes, so n is extrinsic.
cos’¢p 0
0 1
(Different parametrization might have produced the same first fundamental form.) Indeed, we will see
later that S? is not locally isometric to the plane—that is, if you are a 2-dimensional creature living on
52, just by measuring lengths and angles locally, you should be able to tell. This is how people figured
out that Earth is not flat.

Curves on surfaces

Is S2 locally isometric to R?? Different first fundamental form , SO can say nothing yet.

Particle travelling on S?, longitude, latitude at time ¢ is given by (a(t),b(t)). What is distance travelled
in time 0 to t? Reasonable real-world problem, we know GPS coordinates. So (a(t),b(t)) gives a curve
a: I — R? to (0, ¢) plane, and x: R? — S? is the spherical coordinates chart, and the curve is z o a. So

d(xz o) da db

T Ta T tw T a
da.2 da db db.2
2 _ _ aa aa ab av
[v|* = g(v,v) —gll(dt) + 2612 7l +g22(dt)
da db

= (:052(6(15))(5)2 + (a)2

and distance travelled is fot vdt.

An aside. Notice, for us, usually g is given by a diagonal matrix, that is z1 and x5 are perpendicular. This
is because we are choosing parametrizations carefully. This is not true for arbitrary parametrizations.
So that was an example of a curve on a surface. So we have a curve a = (at,a?): I — U C R? and a
coordinate patch z: U — S C R3, and by composing we get acurve zoa: [ — R3 on the surface S.
We have already seen the tangent vector to the curve 3 xi%, a linear combination of x1 and x3, is in
T,5.

As before, from now on, we will impose the curve is unit speed, and write s instead of ¢t. That is a messy

condition,
S0 () (1 02) (%) 2
Yodt dt dt dt go1 922 % ’

The unit tangent then is given by T' = % = Z$¢%~
Next for unit speed curves, we can compute curvature kN = dT'/ds. If n is unit normal to surface, T is
unit normal to curve, then set S =n x T; n, T, S form a positive orthonormal frame. The curvature kN

has no component along 7', so we can write KN = k55 + kpn.



