
Differential Geometry of Curves and Surfaces by Do Carmo.
Elements of Differential Geometry by Millman and Parker.
(The notation and conventions are different in the two books. In class, we will follow conventions from Do
Carmo and notation from Millman and Parker.)

Background.

(1) Derivative. Given differentiable Rm f→ Rn, and a point a ∈ Rm, the derivative dfa is a linear map
Rm → Rn. If we fix coordinates x1, . . . , xm and y1, . . . , yn, that fixes a basis, and can represent dfa by
a n×m matrix whose entries are ∂yj/∂xi. So df : Rm → Rmn is the derivative function.

(2) C0 means continuous. If df exists and df : Rm → Rmn is Ck−1, then f is Ck. Inductive definition. Ck

means k times differentiable and kth derivative is continuous. C∞ is smooth, infinitely differentiable.

(3) Chain rule. Consider Rm f→ Rn g→ Rp, and fix coordinates x1 . . . , xm, y1 . . . , yn, z1, . . . , zp, and a starting

point a ∈ Rm. Then a 7→ f(a) 7→ g(f(a)), and we have linear maps Rm dfa→ Rn
dgf(a)→ Rp. Then as

linear maps d(g ◦ f)a = dgf(a) ◦ dfa. As matrices d(g ◦ f)a = dgf(a)dfa. In terms of matrix entries,
∂zk
∂xi

=
∑n
j=1

∂zk
∂yj

∂yj
∂xi

. Double index notation, latter is written
∑ ∂zk

∂yj

∂yj
∂xi

.

Basic curves in 3D.

(1) Fix interval I ⊂ R, open or closed (could be I = R) Curve α : I → R3, different from its image. Think
of particle traveling in space; image is the path traced out.

(2) Velocity α′ = dα/dt : I → R3. We view α(t) as a point in R3, but α′(t) as a 3D vector, drawn starting
at α(t). This is also the tangent vector to the curve. Speed is length of the vector |α′|.

(3) To avoid sharp corners, we will assume curves are regular, that is α′(t) 6= 0∀t. The path can be
the image of a C∞ (smooth) path, but it has a sharp corner, and doesn’t look smooth. If we impose
regularity, then well-defined tangent direction at each point, and so no more sharp corners.

(4) For regular curves, unit tangent T (t) = α′(t)/|α′(t)|, unit vector in the tangent direction. Velocity α′

was extrinsic (depends on how a particle travels a given path), but T (t) is clearly intrinsic (depends only
on the path and direction on travel).

(5) Reparametrization. Consider two intervals I, J , and h : I → J a bijection, so that both h and h−1 are
C3. Then if α : I → R3 and β : J → R3 are related by α = β ◦ h (equivalently β = α ◦ h−1), then one is
a reparametrization of the other. Both of them have the same image, represent the same path in space,
but traveled differently (with different speed, etc).

(6) Reparametrization again, h : I → J , g : J → I, g ◦ h = IdI , h ◦ g = IdJ , both Ck. If α, β related by

reparametrization, takes regular curves to regular curves. Clearly Ck to Ck. ∂β
∂s |a = ∂α

∂t |g(a)
∂g
∂s |a, so just

need to show ∂g
∂s |a 6= 0. Chain rule again on h ◦ g = IdJ .

(7) Alternate description of reparametrization. h : I → J onto, h ∈ Ck, and h′(t) 6= 0∀t. Injective by Mean
Value Theorem; indeed two cases, h′ > 0 or h′ < 0 (strictly increasing or strictly decreasing). So if
g = h−1, why g ∈ Ck?

(8) Review Inverse Function theorem f : Rn → Rn. If dfa (n × n) non-singular, then locally has inverse,
and inverse is also Ck. In case n = 1 (like now), has global inverse (as we saw), but for general n, not.
Example: C → C, z 7→ ez, so f : R2 → R2, (x, y) 7→ (ex cos y, ex sin y), compute |df | = ex 6= 0, but no
global inverse since not injective.

(9) If two curves α, β, related by reparametrization Im(α) = Im(β), but possibly traveled with different
speeds. If h′ > 0, then same orientation (direction of travel), otherwise opposite.

(10) What about converse? If two regular curves have same image, they are related by reparametrization,
since regular curves have a unique canonical reparametrization.

Arc length parametrization.

(1) Assume regular curve α. Arc length. Consider starting point α(t0). Arc length is distance traveled from

t0 to t, integral of speed s(t) =
∫ t
t0
|α′(t)|dt. This is intrinsic, depends only on the starting point, and

the direction of travel, independent of parametrization.
(2) Say h = s is the arc-length parametrization, and J = Im(h). Why is h : I → J a reparametrization? If

g is the inverse, define the arc-length parametrization β(s) = α ◦ g(s).
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(3) What is the velocity (which was extrinsic) under arc-length parametrization? dβ
ds = dα

dt
dg
ds = dα

dt /
dh
dt =

dα
dt /|

dα
dt | = T , the unit tangent. In particular, unit speed. So arc-length parametrization is canonical:

start at the starting point, and travel with unit speed in the given orientation.
(4) Example. Consider the curve α(t) = (r cos t, r sin t, ht). Assume r, h > 0 constants. Do arc length

reparametrization of helix. Useful variable ω = 1√
r2+h2

.

(5) Draw (r cos t2, r sin t2, ht2). Different image from the helix. Sharp turn, not regular at t = 0.
(6) Draw (r cos t3, r sin t3, ht3). Same image as the helix, but still not a reparametrization since not regular

at t = 0. The change of variable functions are t3 (which is C∞) and t1/3 (which is not C1).
(7) Although arc length parametrization always possible for unit speed curves, very hard in practice. Con-

sider the parabola y = x2/2, find arc length parametrization starting at (0, 0). First find regular

parametrization α(t) = (t, t2/2), then s(t) =
∫ t
0

√
1 + t2dt = 1

2 (t
√

1 + t2+ln(t+
√

1 + t2)). (Do t = tan θ,

then integrate sec3 θ by parts.) Then arc length parametrization is α(t(s)), but impossible to write down
the inverse function t(s).

Curvature and torsion.

(1) Nevertheless, only consider unit speed curves α(s) from now. Velocity is unit tangent: α′(s) = T (s).
Acceleration α′′(s) = T ′(s) measures rate of change of T , so change in the direction of travel. So
curvature κ(s) = |T ′(s)|.

(2) If κ(s) 6= 0, then N(s) = T ′(s)/κ(s), the direction of the rate of change. So T ′ = κN . Note, N only
defined when curvature is non-zero.

(3) N is perpendicular to T , since for any unit vector v, v′ is perpendicular to v (differentiate v · v).
(4) Do helix example. κ = rω2 = r

r2+h2 , and N points inwards towards the axis. Special case, h = 0, circle

of radius r. Curvature is 1/r, smaller circles have larger curvature.
(5) From now on assume κ(s) 6= 0∀s. Needed to make sense of N . Then we get a right-handed orthonormal

basis T,N,B, where B = T ×N ; explain.
(6) Orthonormal frame, right-handed (positive) vs left-handed (negative). (i, j, k), (k, j, i), (j, k, i) are posi-

tive. Cyclic (even) permutations. Form a basis. Any vector can be written uniquely, and the coefficients
are given by dot products.

(7) Let’s keep differentiating. N ′ is perpendicular to N , so N ′ = aT + bB. Since N,T orthogonal, a = −κ.
Let b = −τ , torsion. (Osculating plane spanned by T,N ; the plane spanned by N,B is normal plane,
and the plane spanned by T,B is rectifying plane. τ is the rate of rotation of B in the normal plane.)

(8) One more derivative: B′ = τN . (B′ perpendicular to B, and its coefficient at N,T is negative of the
coefficients of N ′, T ′ at B.)

(9) The data (κ, τ, T,N,B) called Frenet-Serret apparatus. Very important to remember, only considering
the Frenet-Serret apparatus for unit speed curve. If not-unit speed, then reparametrize (which might be
hard) and then consider this data. Moreover, N,B, τ only defined if κ 6= 0.

(10) Calculate (κ, τ, T,N,B) for the helix (r cos t, r sin t, ht), τ = hω2 = h
r2+h2 .

(11) If κ = 0 on an interval, then T constant, so linear. If κ = 0 at an isolated point, this story not valid,

and the osculating plane can change drastically, α(t) = (t, e−1/t
2

, 0) or (t, 0, e−1/t
2

).
(12) If κ > 0, τ = 0 on an interval, then B constant, so particle travels in the plane perpendicular to B.
(13) Frenet-Serret equation T ′N ′

B′

 =

 0 κ 0
−κ 0 −τ
0 τ 0

TN
B


Proof: Decompose a vector along orthonormal basis by dot products. Treating T,N,B as row vectors.
So the equation is 3× 3 = (3× 3)(3× 3). Also note the matrix is skew-symmetric.

Fundamental theorem of curves.

(1) Picard’s theorem. I ⊂ R open interval around 0, c ∈ Rn, A : Rn× I → Rn, uniformly (in time) bounded
partial derivatives wrt space coordinates. Then unique α : I → Rn with α(a) = c and dα/dt = A(α(t), t).
Particle traveling in Rn, initial condition specified, and velocity specified depending on its position and
time.

(2) Counterexample x′ = x1/3, x(0) = 0. No solutions for t < 0, two solutions x = ±
√

(2t/3)3 for t > 0.

(3) Outline of proof; iterations of integrals. φn(t) = c+
∫ t
a
A(φn−1(t), t)dt.
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(4) Fundamental theorem of curves. Any regular curve with κ > 0 is uniquely determined by κ and τ .
More precisely: 0 ∈ I ⊂ R (I open interval), κ ∈ C1(I) with κ(s) > 0∀s, τ ∈ C0(I), x0 ∈ R3, D,E, F
right-handed orthonormal basis of R3. Then unique C3 unit-speed curve α : I → R3 with α(0) = x0,
(T (0), N(0), B(0)) = (D,E, F ), κ(s) = κ(s), and τ(s) = τ(s).

(5) Proof. Picard uniquely specifies the frame T ,N,B. The function A : R9 × I → R9 is given by

A(T 1, T 2, T 3, N1, N2, N3, B1, B2, B3, s) =

 0 κ(s) 0
−κ(s) 0 −τ(s)

0 τ(s) 0

T 1 T 2 T 3

N1 N2 N3

B1 B2 B3

 .

So satisfies the Lipshitz condition. For instance

∂A

∂T 1

=

 0 0 0
−κ(s) 0 0

0 0 0

 .

Since κ, τ ∈ C0, bounded (on any closed interval in I, which is enough). Define α(s) = x0 +
∫ s
0
T (s)ds.

(6) Show T ,N,B positive orthonormal. Consider Picard’s theorem again with six variables x · y, x, y ∈
{T,N,B}. Uniqueness of solution forces orthonormality. Positivity is forced by continuity of [T ,N,B]—
triple scalar product.

(7) Immediate that α is unit speed. To show α ∈ C3, need T ∈ C2, so κN ∈ C1, which we have. (This
is exactly where we needed κ to be C1—to ensure the curve is C3, which is needed in order to define
torsion.)

(8) Easy to show x = x for x = T,N, κ,B, τ in this order.
(9) If τ , κ > 0 constant, then circular helix. Proof. Just show it satisfies the equation, with r = κ

κ2+τ2 ,

h = τ
κ2+τ2 . (τ < 0 right-handed, τ > 0 left-handed, τ = 0 circle.)

Non-unit speed curves.

(1) Regular but not (necessarily) unit speed curve, α(s(t)). Derivatives wrt s are prime, wrt t are dots.
Chain rule, ẋ = x′ṡ. Let speed v = ṡ = |α̇|. Running example α(t) = (t, t2, t3).

(2) Rest follows by just differentiating α̇ = vT . (T = α̇/v.)

(3) α̈ = v̇T + vṪ = v̇T + v2κN , α̇× α̈ = v3κB. (κ = |α̇× α̈|/v3, B = α̇× α̈/κv3, N = B × T .)

(4)
...
α = v̈T + v̇vκN + ˙(v2κ)N − v3κ2T − v3κτB, [α̇, α̈,

...
α ] = −(v3κ)2τ . (τ = −[α̇, α̈,

...
α ]/(v3κ)2.)

(5) Frenet-Serret equations. ṪṄ
Ḃ

 =

v 0 0
0 v 0
0 0 v

T ′N ′
B′

 =

 0 κv 0
−κv 0 −τv

0 τv 0

TN
B


Rotation index.

(1) Define T, n for plane C2 curves, by setting b = k̂ and n = b×T . Explain n = ±N , if the latter is defined,
and explain the sign. (n is obtained by rotating T by 90◦.) Define planar curvature kP by T ′ = kPn,
which can be negative (turning left vs turning right.) kP measures the rate of change of direction of T .

(2) More precise version of the previous statement. Write T (s) = (cos(θ(s)), sin(θ(s))), explain how to make
sense locally. If T (s) is C1, so is θ(s). Then kP (s) = θ′(s).

(3) Homework problem. Find curve with κ(s) = 1
1+s2 , τ(s) = 0, x0 = 0, (D,E, F ) = (i, j, k). Planar motion

in xy plane. T (s) = (cos θ(s), sin(θ(s))), and κ(s) = kP (s) = θ′. (Note κ(s) never zero, so binormal B

throughout k̂ constant, same as b.)
(4) After fixing θ(0), globally define θ(s) by cutting interval into small pieces where θ(s) doesn’t change by

more than 180◦ (points up, down, right, or left, only). Alternate definition θ(s) = θ(0) +
∫ s
0
k(s)ds.

(5) Periodic (closed) curve, α(s + L) = α(s)∀s, period is smallest such L (which is length of the curve

α : [0, L]→ R2. Index of periodic curve 1
2π

∫ L
0
kds.

(6) Index is total change of θ divided by 2π since θ′ = kP . Interesting index examples: circle oriented both
ways, clover leaf.

(7) Simple closed curve, no self-intersection, α(s) 6= α(t)∀s 6= t ∈ [0, L). Total index is ±1.
(8) Jordan curve theorem (very hard to prove). Complement of simple closed curve has outside (the non-

compact region containing ∞) and inside.
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(9) Simple closed curve is positively oriented if the inside region is on the left.
(10) Index of positively oriented simple closed curve is 1. After translating if necessary, let α(0) be the lowest

point of the curve. That is, if α(s) = (x(s), y(s)), it is minimum of y(s), defined since [0, L] is compact.
The tangent there is horizontal since y′(s) = 0.

(11) Define (u, v) maps to the angle of the vector α(v)− α(u) on the triangle 0 ≤ u ≤ v ≤ L. Limiting case
when u = v is the tangent line. This angle well-defined up to multiples of 2π, but can be well-defined
globally by cutting into small triangles, and fixing a starting value, say (0, 0) 7→ 0. Need triangle is
simply connected.

(12) The theta difference along the hypotenuse is 2π times the index, but along but along each of the other
two sides is π, since α(0) = α(L) was the lowest point, so can never turn more than π. (That is,
(0, L) 7→ π and (L,L) 7→ 2π.)

Coordinate patches.

(1) Just like curves were function α : I → R3, surface is a function x : U → R3, where U is an open set in
R2.

(2) What is an open set in Rn? For every point p ∈ U , there exists some r > 0, so that Br(p) ⊂ U .
Informally, does not contain any point on the boundary. Open intervals are open sets in R. Complement
of open is called closed. (Lots of sets are neither open nor closed.)

(3) Checking whether some function is Ck is local. So makes sense to talk about whether x is Ck. We
assume x ∈ Ck, and k ≥ 1 (usually k ≥ 3).

(4) We also assume x is injective. That is, for simple surfaces like this (also called coordinate patches), do
not allow self-intersections.

(5) Finally a regularity condition, just like we assumed α′(s) 6= 0 for curves to have a well-defined unit
tangent T . Let u1, u2 be the coordinates on R2, and let xi = ∂x

∂ui (which are 3-dimensional vectors).
We assume x1 × x2 6= 0 everywhere. That is, not only are each x1 and x2 non-zero, they are linearly
independent.

(6) Geometric meaning. Hold u2 constant, change u1, get a straight line in U , produces a curve in the
surface, its tangent vector is x1. Similarly, hold u1 constant, change u2, get a different curve, its tangent
vector is u2. These curves are called parametric curves. The regularity condition says x1 and x2 are
linearly independent (always draw them starting at x(p)), that is, they span a 2-dimensional plane,
which is called the tangent plane at p (or x(p)). What is the unit normal? (n = x1×x2

|x1×x2| .)

(7) Example is a graph. Let f : U → R, f ∈ Ck. Then graph is a function U → R3, (u1, u2) 7→
(u1, u2, f(u1, u2)). Why is this a simple surface? Check Ck, injective, and the regularity condition.

(8) Example of an example, graph of f(u1, u2) =
√

1− (u1)2 − (u2)2. What is the domain? Unit disk, but
we want open domain, so open unit disk. The surface is the upper hemisphere.

(9) Another way to visualize the sphere, spherical coordinates. Consider the surface

(θ, φ) 7→ (cos θ cosφ, sin θ cosφ, sinφ).

What are the parametric curves? Latitudes (circles, usually not great) and longitudes (half great circles).
We need injective, so what is a good domai? (0, 2π) × (−π/2, pi/2). What is the image? (Unit sphere
minus the poles, as well as the prime meridian.) Finally, check regularity: |xθ × xφ| = cosφ > 0. What
is unit normal? Can find it geometrically as well since it points outwards.

(10) Next we study reparametrization. Completely analogous to curves. Consider surfaces x : U → R3 and
y : V → R3. Reparametrization are Ck functions h : U → V, g : V → U , with h ◦ g = IdV , g ◦ h = IdU
and x = y ◦ h (equivalently y = x ◦ g).

(11) For curves, it was equivalent to saying h′(s) 6= 0∀s. What about dhp, for p ∈ U? What is dhp? Linear

map R2 → R2, represented by 2×2 matrix ( ∂u
i

∂uj ) since we have basis. This matrix is called the Jacobian.
It is non-singular. Has an inverse dfh(p) by chain rule, dgh(p) ◦ dhp = Id.

(12) But unlike for curves, this is not enough to check, since inverse function theorem is only local. So to
check reparametrization, need to check h is bijective (with inverse say g), h ∈ Ck, dhp is non-singular
everywhere. No need to check g ∈ Ck, since that is a local statement and follows from inverse function
theorem. (This will actually be automatic if both x and y are regular, by Implicit function theorem.)
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(13) Also unlike curves, no canonical parametrization. So to define any invariants of surfaces, first need to
parametrize, then define it in terms of that parametrization, and then check independence of parametriza-
tion.

(14) We have so far: Tangent plane, unit normal. Check independence under reparametrization. Draw picture

of xi = ∂x
∂ui and yj = ∂y

∂vj on the same surface. Why is plane spanned by y1, y2 same as plane spanned
by x1, x2? How are they related?

(15) Since y = x ◦ g, chain rule,

yi =
∂y

∂vi
=
∑ ∂x

∂uj
∂uj

∂vi
=
∑

xj
∂uj

∂vi

(in the double index summation notation). In terms of matrices 2× 3 = (2× 2)(2× 3),

(
y1 y2

)
=
(
x1 x2

)(∂u1

∂v1
∂u1

∂v2
∂u2

∂v1
∂u2

∂v2

)
(16) To check same tangent plane, just need to check same normal vector. So

y1 × y2 = det(J)(x1 × x2).

Recall det(J) 6= 0, so simultaneously checks that the condition of regularity is preserved under transfor-
mation (x1 × x2 6= 0 implies y1 × y2 6= 0), as well as, unit normal preserved up to sign (depending on
whether det(J) > 0 or < 0), and hence the tangent plane is also preserved.

(17) What is a tangent vector X (usually capital letters)? By definition it is a linear combination of x1 and

x2. To preserve double index notation, write ~X =
∑
iX

i~xi.
(18) Alternate description, tangent vectors are velocity vectors of curves through that point. That is, fix

p ∈ U , let q = x(p) be its image on the surface, and let α : I → U be a curve through p (with α(0) = p).
Then composite x ◦ α is a curve on the surface through q. We claim, the velocity of this curve is a
tangent vector. Chain rule,

d(x ◦ α)

dt
|t=0 =

∂x

∂u1
|p
du1

dt
|t=0 +

∂x

∂u2
|p
du2

dt
|t=0 = x1

du1

dt
+ x2

du2

dt

is a linear combination of x1 and x2.

Surfaces.

(1) Definition of Ck surface, example is S2 ⊂ R3. Recall simple surface, but S2 cannot be covered by a
single coordinate chart. So need a bunch.

(2) Digression about topology. Need a notion of open sets, example Rn. Subset of a topological space is a
topological space. Do examples of open sets in S2. One extreme example is whole S2 is open in S2, but
not in R3.

(3) Surface is a subset S ⊂ R3, and a collection (could be infinite, indeed usually uncountable) of coordinate
charts x : U → R3 (which are all Ck, injective, regular), satisfying the following.

(4) Each x maps to S (that is x(U) ⊂ S), and the map x : U → S is a homeomorphism. (This means
x−1 : x(U)→ U is also continuous.)

(5) For each p ∈ S2, there is some coordinate chart x with p ∈ x(U). That the coordinate charts cover the
whole surface.

(6) Finally, the different charts are compatible. So if we have two charts x : U → S, y : V → S, we get a
bijection y−1 ◦x : x−1(x(U)∩ y(V ))→ y−1(x(U)∩ y(V )). We require this to be a Ck reparametrization,
that is, each of the maps y−1 ◦ x and x−1 ◦ y are Ck.

(7) This compatibility allows us to define tangent space TpS—a two dimensional vector space—at each point
p ∈ S (usually drawn at p). Choose a coordinate chart x that covers p (which exists), define tangent
space for x as the linear span of x1 and x2, and then check it is well-defined, that is, independent of
choices. So if y is another coordinate chart also covering p, then the span of y1 and y2 is the same space.
That is true, since they are reparametrizations of x(U) ∩ y(V ).

(8) Example of surface: S2. We have already seen many parametrizations of S2, like upper hemisphere

(recall, x(u1, u2) = (u1, u2,
√

1− (u1)2 − (u2)2) or spherical coordinates. Can cover S2 with six such
hemispheres, but let’s do something different.
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(9) Stereographic projection from the unit sphere minus north pole (0, 0, 1) to the plane (draw picture);
inverse is a coordinate chart. Equation of straight line from (v1, v2, 0) to (0, 0, 1) is (tv1, tv2, 1 − t), so
when on sphere t = 2

(v1)2+(v2)2+1 , so coordinate chart given by

y(v1, v2) =
( 2v1

(v1)2 + (v2)2 + 1
,

2v2

(v1)2 + (v2)2 + 1
,

1− (v1)2 − (v2)2

(v1)2 + (v2)2 + 1

)
which is C∞ since we are not dividing by 0.

(10) So x and y cover S2, so just need to check overlap condition. The domain and range of y−1 ◦ x are the
punctured disk and complement of unit disk.

(11) Write down y−1 ◦ x, (u1, u2) 7→
(

u1

1−
√

1−(u1)2−(u2)2
, u1

1−
√

1−(u1)2−(u2)2

)
, (figure out x−1 by drawing the

straight line (tp, tq, 1 + t(q − 1)) from (0, 0, 1) to the point (p, q, r) on the sphere), from punctured disk

and its inverse x−1 ◦y, (v1, v2) 7→
(

2v1

(v1)2+(v2)2+1 ,
2v2

(v1)2+(v2)2+1

)
, from the complement of the disk. Check

both are C∞, so reparametrization, so defined S2 as a surface.

First fundamental form.

(1) First recall linear map, V ∼= Rn is n-dimensional vector space (for us, n = 2), f : V → V is linear if
f(λu+µv) = λf(u) +µf(v)∀λ, µ, u, v. If we choose a basis {x1, . . . , xn}, then f determined by its value

on xi, so if f(xi) =
∑
f ji xj , then f is uniquely determined by matrix (f ji ). Conversely, a matrix A

determines a linear map v 7→ Av.
(2) Bilinear map is something completely different. Map g : V × V → R which is linear in each factor,

g(λu + µv,w) = λg(u,w) + µg(v, w) and similarly. If we choose a basis, also determined by a matrix
gij = g(xi, xj). Conversely, matrix B determines a bilinear map (u, v) 7→ uTBv.

(3) Matrix represents bilinear form if both indices subscripts, but a linear map if one index subscript one
index superscript.

(4) Symmetric, positive definite (g(v, v) > 0∀v 6= 0) bilinear map is called an inner product. Corresponding
matrix is symmetric and positive definite.

(5) Back to surfaces. Given a surface S and point p ∈ S, have defined 2-dimensional tangent space TpS.
One of the first examples of an abstract vector space, does not come with natural basis. (We can choose
a coordinate chart x, and will get a basis x1, x2, but some other coordinate chart will give some other
basis.) Nevertheless has an inner product, first fundamental form, g(u, v) = 〈u, v〉 = I(u, v) = u · v.
We defined without parametrizing, so property of surface (independent of parametrization). If we fix a
patch, g represented by matrix (gij) where gij = xi · xj .

(6) Example S = R2, parametrize as x(u1, u2) = (u1, u2), g is the identity matrix. Identical for the cylinder
x(θ, z) = (cos θ, sin θ, z).

(7) The sphere S2 with spherical coordinates x(θ, φ) = (cos θ cosφ, sin θ cosφ, sinφ), 0 < θ < 2π, −π/2 <
φ < π/2. We get

g =

(
cos2 φ 0

0 1

)
(8) We are studying local properties of surfaces. Local means depends only on a neighborhood, like Ck,

tangents, normals, curvature, most things in the course so far. Indeed only global thing so far is total
index of simple closed curves. Property means independent of parametrization. Example, tangent space
TpS, normal ±n, first fundamental form g. When did we check g is independent of parametrization?
(g was defined without using parametrization.) Of course, if we choose a parametrization, g is given a
matrix (gij) with gij = xi · xj , and if we change parametrization, we will get a different matrix which is
related to this by multiplying with J t and J on two sides.

(9) Local properties are classified into intrinsic or extrinsic. Intrinsic means can access them if you are a two
dimensional creature living on the surface, cannot look up. (In Flatland, the protagonist is a triangle
living in R2). So TpS is intrinsic, since tangent vectors are just directions of travel, and length is how
fast you are traveling. So is g, since u · v = |u||v| cos θ, and we can measure lengths and angles. But
normal is extrinsic, since we cannot look up.

(10) Technical definition of intrinsic, anything that depends only on g (since lengths and angles are all that
we can measure); everything else is extrinsic. So how do we prove ±n is extrinsic?
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(11) Parametrize cylinder, x(u1, u2) = (cosu1, sinu1, u2), compute first fundamental form, same as that of
plane. So locally looks the same (isometric) to the plane. (Globally different, since on the cylinder you
can keep travelling in certain directions and come back.) But for the plane n is constant, but for the
cylinder n changes, so n is extrinsic.

(12) Is S2 locally isometric to R2? Different first fundamental form

(
cos2 φ 0

0 1

)
, so can say nothing yet.

(Different parametrization might have produced the same first fundamental form.) Indeed, we will see
later that S2 is not locally isometric to the plane—that is, if you are a 2-dimensional creature living on
S2, just by measuring lengths and angles locally, you should be able to tell. This is how people figured
out that Earth is not flat.

Curves on surfaces

(1) Particle travelling on S2, longitude, latitude at time t is given by (a(t), b(t)). What is distance travelled
in time 0 to t? Reasonable real-world problem, we know GPS coordinates. So (a(t), b(t)) gives a curve
α : I → R2 to (θ, φ) plane, and x : R2 → S2 is the spherical coordinates chart, and the curve is x ◦α. So

v =
d(x ◦ α)

dt
= x1

da

dt
+ x2

db

dt

|v|2 = g(v, v) = g11
(da
dt

)2
+ 2g12

da

dt

db

dt
+ g22

(db
dt

)2
= cos2(b(t))

(da
dt

)2
+
(db
dt

)2
and distance travelled is

∫ t
0
vdt.

(2) An aside. Notice, for us, usually g is given by a diagonal matrix, that is x1 and x2 are perpendicular. This
is because we are choosing parametrizations carefully. This is not true for arbitrary parametrizations.

(3) So that was an example of a curve on a surface. So we have a curve α = (α1, α2) : I → U ⊂ R2, and a
coordinate patch x : U → S ⊂ R3, and by composing we get a curve x ◦ α : I → R3 on the surface S.

(4) We have already seen the tangent vector to the curve
∑
xi
dαi

dt , a linear combination of x1 and x2, is in
TpS.

(5) As before, from now on, we will impose the curve is unit speed, and write s instead of t. That is a messy
condition, ∑

gij
dαi

dt

dαj

dt
=
(
dαi

dt
dαj

dt

)(
g11 g12
g21 g22

)(
dαi

dt
dαj

dt

)
= 1.

The unit tangent then is given by T = d(x◦α)
ds =

∑
xi
dαi

ds .
(6) Next for unit speed curves, we can compute curvature kN = dT/ds. If n is unit normal to surface, T is

unit normal to curve, then set S = n×T ; n, T, S form a positive orthonormal frame. The curvature kN
has no component along T , so we can write κN = κgS + κnn.


