MAT 120A FINAL DEC 5, 2016 3-6PM

NAME:

- This is a non-collaborative closed-book exam. You are not allowed to use books, notes, or any electronic devices (such as calculators, phones, computers) during the exams.
- There are a total of five problems and a total of fourteen pages.
- You need to justify all answers.
- Do not forget to write your name in the space above.

1	10	
2	10	
3	10	
4	10	
5	60	
Total	100	

1. Distances

1.1. (4pts) Let M be a surface in \mathbb{R}^3 that intersects a plane P in a curve γ , and assume M is symmetric with respect to P. Prove that γ , when parametrized by arc length, is a geodesic of M.

1.2. (6pts) Let M be the surface $x^4 = y + z^4$. Calculate the distances between the following pairs of points on M. (You may leave the answers as definite integrals.)

1.2.1. A = (1, 0, -1) and B = (-2, 0, 2).

1.2.2. C = (0, -1, 1) and D = (0, -1, -1).

1.2.3. E = (1, 1, 0) and F = (2, 16, 0).

2. Non-positivity of Gaussian curvature

(Recall: Gaussian curvature is the product of the maximum and minimum normal curvature.)

- **2.1.** (3pts) Prove that the Gaussian curvature at a point p on a surface M is non-positive if and only if there is a curve on M through p whose normal curvature at p is zero.
- **2.2.** (2pts) In fact, prove that if the Gaussian curvature at a point p on a surface M is non-positive, then there is a curve on M through p whose total curvature at p is zero.
- **2.3.** (2pts) Assume that a surface M contains a straight line L. Prove that at each point of L, the Gaussian curvature of M is non-positive.
- **2.4.** (3pts) Give an example of a surface M containing a straight line L, so that the Gaussian curvature of M at each point of L is strictly negative.

3. Lines of curvature

(10pts) Consider a coordinate chart $\mathbf{x}(u^1,u^2)$ and assume that each point the two principal curvatures are unequal. Prove that the u^i -curves are lines of curvature if and only if $L_{12}=g_{12}=0$.

4. Isoperimetric inequality

(10pts) What is the maximum area that can be enclosed by a closed curve of length 1 on the cylinder $x^2+y^2=1$?

5. Torus

Consider the surface T consisting of points of the form

$$\mathbf{x}(u^1, u^2) = ((2 + \cos(u^1))\cos(u^2), (2 + \cos(u^1))\sin(u^2), \sin(u^1)),$$

for $u^1, u^2 \in \mathbb{R}$.

5.1. (6pts) For any real numbers A, B, consider

$$\mathbf{x}|_{(A,A+2\pi)\times(B,B+2\pi)},$$

that is, the function $\mathbf{x}(u^1,u^2)$ restricted to $A < u^1 < A + 2\pi$ and $B < u^2 < B + 2\pi$. Prove that each of these functions is a proper coordinate patch on the surface T, that these patches are compatible with one another, and that they cover the entire surface T.

- **5.2.** (6pts) Compute \mathbf{x}_1 and \mathbf{x}_2 , which form a basis for the tangent space of T. Compute the unit normal vector \mathbf{n} .
- **5.3.** (6pts) Compute the matrix (g_{ij}) which represents the first fundamental form on the tangent space in terms of the basis from Problem 5.2. Check that it is positive definite. Compute the inverse matrix (g^{ij}) .
- **5.4.** (6pts) Compute the matrix (L_{ij}) which represents the second fundamental form on the tangent space in terms of the basis from Problem 5.2. Is it positive definite?
- **5.5.** (6pts) Let $\vec{X} = 5\mathbf{x}_1 + 3\mathbf{x}_2$ and $\vec{Y} = 2\mathbf{x}_1 \mathbf{x}_2$ be two tangent vectors. Compute the lengths of \vec{X} , \vec{Y} , and the angle between them. Compute the second fundamental form $II(\vec{X}, \vec{Y})$.
- **5.6.** (6pts) Define the Weingarten map L as a linear map from the tangent space to itself. Write down $L(\mathbf{x}_1)$ and $L(\mathbf{x}_2)$ in terms of \mathbf{x}_1 and \mathbf{x}_2 .
- **5.7.** (6pts) Compute the eight Christoffel symbols Γ^k_{ij} . You may use the extrinsic formula $\sum \langle \mathbf{x}_{ij}, \mathbf{x}_l \rangle g^{lk}$ or the intrinsic formula $\frac{1}{2} \sum \left(\frac{\partial g_{il}}{\partial u^j} + \frac{\partial g_{jl}}{\partial u^i} \frac{\partial g_{ij}}{\partial u^l} \right) g^{lk}$.
- **5.8.** (6pts) Consider the curves $u^1 = C$ and the curves $u^2 = D$, where C and D are constants, each parametrized by arc length. Compute their normal and geodesic curvatures (extrinsically or intrinsically, as you prefer). Which of these curves are geodesics?
- **5.9.** (6pts) Compute the eigenvalues and eigenvectors of L. What are the principal curvatures and what are the lines of curvature?
- **5.10.** (6pts) Compute the mean curvature and the Gaussian curvature. What are the integrals of the mean curvature and the Gaussian curvature over the whole surface T?