
Induction.

(1) 1
n+1 + · · ·+ 1

2n = 1− 1
2 + 1

3 − · · ·+
1

2n−1 −
1
2n .

(2) 2n ≥ n2 ∀n ≥ 4.
(3) Complement of n lines in R2 can be checkerboard colored.
(4) Assume Bertrand Postulate, there is a prime p between x and 2x for all integers x. Prove that every

natural number can be written as a sum of distinct primes or 1.
(5) Fibonacci sequence F1 = F2 = 1, Fn+1 = Fn + Fn−1. Show F2n+1 = F 2

n+1 + F 2
n .

(6) Every triangle can be cut into n ≥ 6 triangles similar to it.
(7) V − E + F = 2 for connected planar graphs.

Pigeonhole Principle.

(1) 5 points chosen in a triangle of side length 2; some two are within distance 1.
(2) 50 distinct positive integers chosen less than 99. Some two add up to 99.
(3) n people are at a party. Show some two know the same number of people.
(4) Each point in the plane is colored red-blue. Some two points at distance 1 have same color. Also works

with 3 colors.
(5) 5 points are chosen from a 2D lattice Λ. The midpoint of some two is also on Λ.
(6) {x} ∈ [0, 1) is the fractional part. For irrational α, {nα} is dense in [0, 1].

Inequalities.

(1) AM-GM, proof by induction.
(2) Weighted AM-GM.

(3) Generalization. If f continuous with f(x1+x2

2 ) ≥ f(x1)+f(x2)
2 , then f(

∑
pixi∑
pi

) ≥
∑
pif(xi)∑
pi

.

(4) These sort of functions are called concave. Appear from C2 functions with f ′′ ≤ 0. Jensen’s inequality.
Proof uses mean value theorem.

(f(x2)− f(
x1 + x2

2
))− (f(

x1 + x2
2

)− f(x1)) =
x1 − x2

2
(f ′(y2)− f ′(y1)) =

x1 − x2
2

(y2 − y1)f ′′(z) ≤ 0.

(5) Apply to f(x) = lnx to get AM-GM by applying exp to both sides.
(6) Basic inequality, if f is C1 and f ′ ≥ 0, then f is increasing.
(7) Prove 2 sinx+ tanx ≥ 3x for 0 ≤ x < π/2.
(8) Taylor expansion. (1 + x)p ≤ 1 + px if x > −1, 0 < p < 1.

(9) Maximize area ab for fencing with total fence length 3a+ 2b = 1000.

(10) Generalizations of AM-GM.
(∑ pix

k
i∑

pi

)1/k
is increasing in k. Mention special cases k = 0,±1, 2,±∞ (GM,

AM, HM, QM, max, min).
(11) For a, b, c > 0,

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2
.

(12) Cauchy-Schwarz inequality. Difference is a sum of squares
∑
i<j(aibj − ajbi)2. Equality if proportional.

(13) Geometric interpretation. |~a ·~b| = |~a||~b| cos θ.
(14) Cauchy-Schwarz is equivalent to weighted AM-QM.
(15) Triangle inequality. For a, b, c sides of a triangle, show (a + b − c)(b + c − a)(c + a − b) ≤ abc. Useful

substitution x = b+ c− a, etc.
(16) Sides of a triangle. Show 2(a2 + b2 + c2) ≤ (a+ b+ c)2.
(17) Holder inequality (generalization of Cauchy-Schwarz). For 1/p+ 1/q = 1,∑

|aibi| ≤ (
∑
i

|ai|p)1/p(
∑
i

|bi|q)1/q

(18) Minkowski inequality (generalization of triangle inequality). For p ≤ 1,

(
∑
|ai + bi|p)1/p ≤ (

∑
|ai|p)1/p + (

∑
|bi|p)1/p.

Number theory.

(1) Euclidean algorithm for gcd. Unique decomposition a = qb+r (Euclidean domain). Corollary: {sa+ tb |
s, t ∈ Z} = Z〈gcd(a, b)〉. Do for a = 90, b = 65.
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(2) Find all solutions of ax+ by = c (x = x0 + bt/d, y = y0 − at/d). Do 18x+ 32y = 6.
(3) Prove 21n+4

14n+3 is irreducible.

(4) Prove
√

3 irrational. Do
√

2 +
√

3.
(5) Unique factorization into primes. Need p | ab =⇒ p | a or p | b.
(6) Prove gcd(a, b)lcm(a, b) = ab.
(7) Modular arithmetic, residue classes (mod n), Z/n. Notation, x ≡ y (mod n). Calculate 142 + (15 · 72)

(mod 7).
(8) Every odd square is 1 (mod 8).
(9) Infinitely many primes. Euclid p1 · · · pk + 1. Infinitely many primes 3 (mod 4). 4p1 · · · pk − 1.

(10) Last digit of 7current year 20xx.
(11) Divisibility rule of 9 and 11. Calculate 1745002145 modulo 9 and 11.
(12) Fermat’s little theorem. ap ≡ a (mod p), better version: ap−1 ≡ 1 (mod p) for gcd(a, p) = 1. Calculate

2233 (mod 47).
(13) Generalization aϕ(n) ≡ 1 (mod n), ϕ is Euler’s totient function. Proof: If b1, . . . , bφ(n) are coprime

residue classes (mod n), so are ab1, . . . , abφ(n).
(14) n = pa11 · · · p

ak
k . Then ϕ(n) = n(1 − 1/p1) · · · (1 − 1/pk) by principle of inclusion exclusion. Calculate

1781 (mod 60).
(15) Number of divisors τ(n) = (1 + a1) · · · (1 + ak). Find smallest integer with exactly 28 divisors.

(16) Sum of divisors σ(n) =
∏
i
p
ai
i −1
pi−1 . Do n = 1000.

(17) Highest power of 3 dividing 100!, bn/pc+ bn/p2c+ · · · .
(18) For any 55 numbers from {1, . . . , 100}, some two must differ by 9.
(19) Chinese remainder theorem. m1, . . . ,mn pairwise relatively prime, and ai ∈ Z. There is some x with

x ≡ ai (mod mi).
(20) There are a million consecutive integers none of which is a prime power.
(21) For p prime, each prime factor of 2p − 1 is bigger than p (so infinitely many primes).
(22) If m odd, m | 2(m−1)! − 1. ϕ(m) | (m− 1)!.

Algebra.

(1) Groups. Typical example symmetric group Sn. Also (R,+), (R∗, ·).
(2) If (ab)3 = 1, show (ba)3 = 1.
(3) If aba = ba2b, a3 = 1, b3 = 1, show b = 1.
(4) Ring, always with 1. Typical example n× n matrices Mn(R). Define center Z(R).
(5) Commutative ring. Typical examples Z,Z/n.
(6) If x2 − x ∈ Z(R) for all x, then R is commutative.

(7) Integral domain if no zero divisor. Typical example Z,Z[
√

2],Z[X], not Z/6.

(8) Field. Example Q,R,C,Z/p,Q[
√

2].
(9) D[X] is a domain if D is.

(10) Euclidean domain, F[X] but not Z[X] (division algorithm in Z[X] works for monic polynomials). Ex-
ample: x5 + 3x2 + 1 = (2x3 − x+ 1)(x2/2 + 1/4) + (5x2/2 + x/4 + 3/4).

(11) Euclidean domains are unique factorization domains, as is D[X] for any integral domain D upto multi-
plication with elements in D (can work in quotient field of D).

(12) Find gcd(x8 − 1, x5 − 1) = x− 1 by Euclidean algorithm.
(13) Find P ∈ Q[X] with x2 + 1 | P (x) and x3 + x2 + 1 | P (x) + 1.
(14) Over an integral domain, factor theorem: P (α) = 0 iff x− α | P (x).
(15) Unique factorization for Z,Q,R,C. Fundamental theorem of algebra for R,C.
(16) For what n is x4n − 2xn + 1 divisible by x2 + 1?
(17) Identity theorem. If deg ≤ n polynomials P,Q have P (αi) = Q(αi), i = 0, . . . , n, then P = Q.
(18) Find all P ∈ R[X] with P (x2 + 1) = P (x)2 + 1 and P (0) = 0.
(19) Gauss’ Lemma for Z (a rational factorization produces an integer factorization)
(20) Viete relations, relating symmetric polynomials of roots to coefficients. Find polynomial for the squares

of roots of x2 + ax+ b.
(21) anx

n + · · ·+ a3x
3 + x2 + x+ 1 does not have all real roots.

(22) Wilson’s theorem (p− 1)! ≡ −1 (mod p).

Series.
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(1) a+ ax+ · · ·+ axn, then as x→∞. Define partial sums.
(2) cos θ + · · ·+ cosnθ.
(3) Telescoping.

∑
an, with an = bn−1 − bn. If bn → 0, then converges.

(4)
∑

1
n(n+1) .

(5) Prove F1 + F2 + · · ·+ Fn = Fn+2 − 1.

(6)
∏∞
n=2

n3−1
n3+1 .

(7) Series for (1 + x)n.
∑
i

(
n
i

)
,
∑
i(−1)i

(
n
i

)
,
∑
k

(
m
r−k
)(
n
k

)
=
(
m+n
r

)
.

(8) Taylor series. Recalls (finite) Taylor’s theorem. Do ex, cosx, sinx, log(1 + x), (1 + x)r (for arbitrary
r 6= 0).

(9) Geometric again
∑
xn = 1/(1− x). Do

∑
nxn−1,

∑
xn/n.

(10) e is irrational.
(11) Power series

∑
n anx

n. Radius of convergence.
(12)

∑
Fn/3

n. Then write f(x) =
∑
n≥0 Fnx

n = x+ x2 + 2x3 + · · · , and by recurrence, f(x) = x
1−x−x2 .

Combinatorics.

(1) n!, permutation of n elements, number of bijective functions {1, . . . , n} → {1, . . . , n}.
(2) nk, k ordered (not necessarily distinct) elements from {1, . . . , n}, number of functions {1, . . . , k} →
{1, . . . , n}. Number of 4-letter words 264.

(3) n!/(n − k)!, k ordered distinct elements from {1, . . . , n}, number of injective functions {1, . . . , k} →
{1, . . . , n}.

(4)
(
n
k

)
, k unordered distinct elements from {1, . . . , n}, number of (strictly) increasing functions {1, . . . , k} →

{1, . . . , n}.
(5)

(
n+k−1

k

)
, k unordered (not necessarily distinct) elements from {1, . . . , n}, number of (not necessarily

strictly) increasing functions {1, . . . , k} → {1, . . . , n}, same as number of strictly increasing functions
{1, . . . , k} → {1, . . . , n+ k − 1}.

(6)
(
n
k

)
=
(
n

n−k
)
, chosen set vs its complement.

(7) k
(
n
k

)
= n

(
n−1
k−1
)
, a set and an element in it.

(8)
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
, a fixed element is chosen or not, Pascal’s triangle.

(9)
∑
k

(
m
r−k
)(
n
k

)
=
(
m+n
r

)
, choose r elements from m elements and n elements.

(10)
∑
k
(
n
k

)
, differentiate (1 + x)n, or use k

(
n
k

)
= n

(
n−1
k−1
)
.

(11)
∑

1
k+1

(
n
k

)
, integrate, or use 1

n+1

(
n+1
k+1

)
= 1

k+1

(
n
k

)
.

(12)
(
n+k+1

k

)
=
(
n
0

)
+
(
n+1
1

)
+ · · · +

(
n+k
k

)
. Induct on k. Alternatively, choose a subset S of size k from

{1, . . . , n+ k + 1}, and break it up by the largest number outside of S.
(13) Principle of inclusion exclusion.
(14) Number of surjective functions {1, . . . , k} → {1, . . . , n}. If Ai is the set of functions that don’t hit i,

then the number is nk − |A1 ∪ · · ·An|. Use inclusion exclusion to get
∑
i(−1)i

(
n
i

)
(n− i)k.

Recurrences.

(1) Fibonacci sequence f(x) =
∑
Fnx

n, f(x) = x
1−x−x2 . Break into partial fractions, x

1−x−x2 = A
1−αx+ B

1−βx ,

where α, β solutions to z2 − z − 1 (characteristic equation). Get Fn = 1√
5

((
1+
√
5

2

)n − ( 1+√5
2

)n)
.

(2) Number of ways of tiling 2× n board with 2× 1 dominoes, Fn+1.
(3) General linear recurrences. Distinct roots, repeated roots.
(4) an = 4an−1 − 4an−2, a0 = a1 = 1.
(5) an = 3an−1 − 4an−3, a0 = 30, a1 = −10, a2 = 20.
(6) Linear recurrence with additional term. General solution plus one particular solution. an = 3an−1 + 1.

(7) Putnam problem, a1 = 1, a2 = 2, a3 = 24, an =
6a2n−1an−3−8an−1a

2
n−2

an−2an−3
. Show an is an integer divisible by

n.
(8) Catalan numbers, Cn is number of ways of parenthesizing n + 1 variables with n − 1 bracket pairs,

number of binary trees with n + 1 leaves, number of crossingless matchings on 2n strands, number of
paths from (0, 0) to (n, n) on or below the diagonal.

(9) Recurrence Cn+1 =
∑n
k=0 CkCn−k−1. So if f(x) =

∑
Cnx

n, 1 + xf(x)2 = f(x), f(x) = 1−
√
1−4x
2x . Do

expansion to get Cn = 1
n+1

(
2n
n

)
.
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Probability.

(1) Probability a function {1, 2, 3} → {1, 2, 3, 4, 5} is injective.
(2) Cashier (with no money initially) is selling 2n $5 tickets, and n people bring $5 notes, and n people

bring $10 notes. Probability of success 1
n+1 .

(3) Probability 2 people have the same birthday, more likely than not at 23 people.
(4) Real number picked from [0, 1], probability it is less than 1/3? Need to assume picked uniformly.
(5) Probability a point from [0, 1]2 is within distance 1/5 to the middle?
(6) Pick x, y ∈ [0, 1], probability y ≤ x2? Assume picked uniformly and independently.
(7) Two people arrive (uniformly) between 4 and 5, and each waits 15min and then leaves. Probability they

will meet.
(8) Length one needle dropped on infinitely many horizontal lines at distance 2 apart. Probability it hits a

line.
(9) Cut a length d bar into three pieces. Probability they form a triangle. If we picked 2 points x, y (wlog

x < y) simultaneously and cut there, each of the sidelengths x, y − x, d − y has to be less than the
semiperimeter d/2. But if first cut at one point x (wlog x > d/2), then cut the larger piece at αx, then
each of the side lengths αx, (1− α)x, d− x is less than d/2.

Geometry.

(1) Medians of a triangle intersect by Euclidean geometry.
(2) Same using coordinate geometry. Take A = (a1, a2), similarly.
(3) By translation, rotation, scaling, can assume B = (0, 0), C = (1, 0).
(4) Drop perpendiculars PA,PB,PC from P = (a, b) to a parabola. The centroid of ∆ABC is on the axis.
(5) Find the slope one tangents to the ellipse 3x2 + y2 = 3.
(6) Vector addition, points between two points, α~v + (1− α)~w.
(7) Medians intersect using vectors.
(8) D,E, F chosen on the sides of ∆ABC with AF/AB = BD/BC = CE/CA. Centroids of ∆ABC and

∆DEF agree.
(9) AB = AC, D midpoint of BC, DE perpendicular to AC, F midpoint of DE. Prove AF ⊥ BE.

(10) Suppose altitudes AP and BQ of a tetrahedron ABCD are coplanar. Show AB ⊥ CD.
(11) ABCD parallelogram, F midpoint of CD, AF intersects BD in E. Prove DE = DB/3.
(12) Complex conjugates, Cartesian coordinates for addition, polar coordinates for multiplication, unit circle,

roots of unity.
(13) Find z3, given two other points z1, z2 of an equilateral triangle, z3 = −z1ω − z2ω2.
(14) Draw equilaterals triangles BDC,CEA,AFB outside a triangle ABC. Show centroids of the three new

triangles form an equilateral triangle.
(15) P,Q,R, S centers of squares drawn outside a quadrilateral ABCD. Show PR ⊥ QS and |PR| = |QS|.
(16) Regular polygonA1A2 · · ·An of circumradius r, P some other point on the circumcircle. Show

∑
k |PAk|2 =

2nr2.

Analysis.

(1) Continuity, different definitions, sin 1
x discontinuous.

(2) Intermediate value property (IVT), extreme value property.
(3) Given two polygons, there is a line that cuts both in equal areas.
(4) Continuous f with f(x+ y) = f(x) + f(y) must be f(x) = ax.
(5) Continuous f with f(x) = f(x2) must be constant.
(6) A runner runs 6 miles ins 30 minutes. Show he ran one mile in exactly 5 minutes.
(7) Find all continuous functions f : [0,∞)→ R with f(xy) = xf(y) + yf(x).
(8) Example of (discontinuous) function with f(x+ y) = f(x) + f(y) but f(x) 6= ax.
(9) Derivatives. x2 sin 1

x , f ′ exists but is not continuous.
(10) Rolle’s theorem, mean value theorem, Taylor’s theorem.
(11) f = x3 − 3x+ a cannot have more than one zero in [−1, 1].
(12) Show 4ax3 + 3bx2 + 2cx− (a+ b+ c) has a root in [0, 1].
(13) P,Q points on unit circle, R perpendicular from Q to the tangent through P , maximize area of ∆PQR.
(14) Putnam problem, show all roots of P (x) = 1 + 8x+ 16x2 + 8x3 + x4 are real.
(15) Find number of solutions of x2 − x sinx− cosx = 0.
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(16) Find
∫ 4

2

√
ln(9−x) dx√

ln(9−x)+
√

ln(x+3)
.

(17) L’Hospital, f/g, both going to zero, or both going to infinity, limx→0( 1
sin x −

1
x ).

(18) limn→∞(1 + 1
n )n.

(19) limx→0 x
x,

(20) Fundamental theorem of calculus, limx→0
1
x

∫ x
0

(1 + sin 2t)1/tdt.

(21) Find all f satisfying f(x) =
∫ x
0
f(t)dt+ 1.

(22)
∫ x
0
f(t)dt =

∫ 1

x
t2f(t)dt+ x16/8 + x18/9 + C.

(23) limn→∞
(

1
2n+1 + · · ·+ 1

3n

)
.

(24) limn→∞
∑n
k=1

1√
k2+n2

.

(25) limn→∞

√
1+
√
2+···+

√
n√

n3
.

(26) Find integral part (floor) of S =
∑109

1 n−2/3.
(27) f differentiable, f(0) = 0, and f ′ strictly increasing (don’t know if f ′′ exists). Show f(x)/x is strictly

increasing for x > 0.
(28) Find I =

∫ π
0

x sin x
1+cos2 xdx.

(29) Putnam problem, f : [1, 3]→ R, |f(x)| ≤ 1,
∫ 3

1
f(x)dx = 0. Maximum value of

∫ 3

1
f(x)
x dx.


