Induction.

(1) $\frac{1}{n+1} + \dots + \frac{1}{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{1}{2n-1} - \frac{1}{2n}.$ (2) $2^n \ge n^2 \qquad \forall n \ge 4.$

- (3) Complement of n lines in \mathbb{R}^2 can be checkerboard colored.
- (4) Assume Bertrand Postulate, there is a prime p between x and 2x for all integers x. Prove that every natural number can be written as a sum of distinct primes or 1.
- (5) Fibonacci sequence $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$. Show $F_{2n+1} = F_{n+1}^2 + F_n^2$.
- (6) Every triangle can be cut into $n \ge 6$ triangles similar to it.
- (7) V E + F = 2 for connected planar graphs.

Pigeonhole Principle.

- (1) 5 points chosen in a triangle of side length 2; some two are within distance 1.
- (2) 50 distinct positive integers chosen less than 99. Some two add up to 99.
- (3) n people are at a party. Show some two know the same number of people.
- (4) Each point in the plane is colored red-blue. Some two points at distance 1 have same color. Also works with 3 colors.
- (5) 5 points are chosen from a 2D lattice Λ . The midpoint of some two is also on Λ .
- (6) $\{x\} \in [0,1)$ is the fractional part. For irrational α , $\{n\alpha\}$ is dense in [0,1]. Inequalities.
- (1) AM-GM, proof by induction.
- (2) Weighted AM-GM.
- (3) Generalization. If f continuous with $f(\frac{x_1+x_2}{2}) \ge \frac{f(x_1)+f(x_2)}{2}$, then $f(\frac{\sum p_i x_i}{\sum p_i}) \ge \frac{\sum p_i f(x_i)}{\sum p_i}$. (4) These sort of functions are called concave. Appear from C^2 functions with $f'' \le 0$. Jensen's inequality. Proof uses mean value theorem.

$$(f(x_2) - f(\frac{x_1 + x_2}{2})) - (f(\frac{x_1 + x_2}{2}) - f(x_1)) = \frac{x_1 - x_2}{2}(f'(y_2) - f'(y_1)) = \frac{x_1 - x_2}{2}(y_2 - y_1)f''(z) \le 0.$$

- (5) Apply to $f(x) = \ln x$ to get AM-GM by applying exp to both sides.
- (6) Basic inequality, if f is C^1 and $f' \ge 0$, then f is increasing.
- (7) Prove $2\sin x + \tan x \ge 3x$ for $0 \le x < \pi/2$.
- (8) Taylor expansion. $(1+x)^p \le 1 + px$ if x > -1, 0 .

- AM, HM, QM, max, min).
- (11) For a, b, c > 0,

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2}$$

(12) Cauchy-Schwarz inequality. Difference is a sum of squares $\sum_{i < j} (a_i b_j - a_j b_i)^2$. Equality if proportional.

- (13) Geometric interpretation. $|\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta$.
- (14) Cauchy-Schwarz is equivalent to weighted AM-QM.
- (15) Triangle inequality. For a, b, c sides of a triangle, show $(a + b c)(b + c a)(c + a b) \leq abc$. Useful substitution x = b + c - a, etc.
- (16) Sides of a triangle. Show $2(a^2 + b^2 + c^2) \le (a + b + c)^2$.
- (17) Holder inequality (generalization of Cauchy-Schwarz). For 1/p + 1/q = 1,

$$\sum |a_i b_i| \le (\sum_i |a_i|^p)^{1/p} (\sum_i |b_i|^q)^{1/q}$$

(18) Minkowski inequality (generalization of triangle inequality). For $p \leq 1$,

$$(\sum |a_i + b_i|^p)^{1/p} \le (\sum |a_i|^p)^{1/p} + (\sum |b_i|^p)^{1/p}.$$

Number theory.

(1) Euclidean algorithm for gcd. Unique decomposition a = qb + r (Euclidean domain). Corollary: $\{sa + tb \mid sa +$ $s, t \in \mathbb{Z}$ = $\mathbb{Z} \langle \gcd(a, b) \rangle$. Do for a = 90, b = 65.

 $\mathbf{2}$

- (2) Find all solutions of ax + by = c $(x = x_0 + bt/d, y = y_0 at/d)$. Do 18x + 32y = 6.
- (3) Prove $\frac{21n+4}{14n+3}$ is irreducible.
- (4) Prove $\sqrt{3}$ irrational. Do $\sqrt{2} + \sqrt{3}$.
- (5) Unique factorization into primes. Need $p \mid ab \implies p \mid a \text{ or } p \mid b$.
- (6) Prove gcd(a, b)lcm(a, b) = ab.
- (7) Modular arithmetic, residue classes (mod n), \mathbb{Z}/n . Notation, $x \equiv y \pmod{n}$. Calculate $142 + (15 \cdot 72) \pmod{7}$.
- (8) Every odd square is $1 \pmod{8}$.
- (9) Infinitely many primes. Euclid $p_1 \cdots p_k + 1$. Infinitely many primes 3 (mod 4). $4p_1 \cdots p_k 1$.
- (10) Last digit of $7^{\text{current year } 20xx}$.
- (11) Divisibility rule of 9 and 11. Calculate 1745002145 modulo 9 and 11.
- (12) Fermat's little theorem. $a^p \equiv a \pmod{p}$, better version: $a^{p-1} \equiv 1 \pmod{p}$ for gcd(a, p) = 1. Calculate $2^{233} \pmod{47}$.
- (13) Generalization $a^{\varphi(n)} \equiv 1 \pmod{n}$, φ is Euler's totient function. Proof: If $b_1, \ldots, b_{\phi(n)}$ are coprime residue classes \pmod{n} , so are $ab_1, \ldots, ab_{\phi(n)}$.
- (14) $n = p_1^{a_1} \cdots p_k^{a_k}$. Then $\varphi(n) = n(1 1/p_1) \cdots (1 1/p_k)$ by principle of inclusion exclusion. Calculate $17^{81} \pmod{60}$.
- (15) Number of divisors $\tau(n) = (1 + a_1) \cdots (1 + a_k)$. Find smallest integer with exactly 28 divisors.
- (16) Sum of divisors $\sigma(n) = \prod_i \frac{p_i^{a_i} 1}{p_i 1}$. Do n = 1000.
- (17) Highest power of 3 dividing 100!, $|n/p| + |n/p^2| + \cdots$.
- (18) For any 55 numbers from $\{1, \ldots, 100\}$, some two must differ by 9.
- (19) Chinese remainder theorem. m_1, \ldots, m_n pairwise relatively prime, and $a_i \in \mathbb{Z}$. There is some x with $x \equiv a_i \pmod{m_i}$.
- (20) There are a million consecutive integers none of which is a prime power.
- (21) For p prime, each prime factor of $2^p 1$ is bigger than p (so infinitely many primes).
- (22) If m odd, $m \mid 2^{(m-1)!} 1$. $\varphi(m) \mid (m-1)!$.
 - Algebra.
- (1) Groups. Typical example symmetric group S_n . Also $(\mathbb{R}, +), (\mathbb{R}^*, \cdot)$.
- (2) If $(ab)^3 = 1$, show $(ba)^3 = 1$.
- (3) If $aba = ba^2b$, $a^3 = 1$, $b^3 = 1$, show b = 1.
- (4) Ring, always with 1. Typical example $n \times n$ matrices $M_n(\mathbb{R})$. Define center Z(R).
- (5) Commutative ring. Typical examples $\mathbb{Z}, \mathbb{Z}/n$.
- (6) If $x^2 x \in Z(R)$ for all x, then R is commutative.
- (7) Integral domain if no zero divisor. Typical example $\mathbb{Z}, \mathbb{Z}[\sqrt{2}], \mathbb{Z}[X], \text{ not } \mathbb{Z}/6.$
- (8) Field. Example $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p, \mathbb{Q}[\sqrt{2}]$.
- (9) D[X] is a domain if D is.
- (10) Euclidean domain, $\mathbb{F}[X]$ but not $\mathbb{Z}[X]$ (division algorithm in $\mathbb{Z}[X]$ works for monic polynomials). Example: $x^5 + 3x^2 + 1 = (2x^3 x + 1)(x^2/2 + 1/4) + (5x^2/2 + x/4 + 3/4)$.
- (11) Euclidean domains are unique factorization domains, as is D[X] for any integral domain D up to multiplication with elements in D (can work in quotient field of D).
- (12) Find $gcd(x^8 1, x^5 1) = x 1$ by Euclidean algorithm.
- (13) Find $P \in \mathbb{Q}[X]$ with $x^2 + 1 | P(x)$ and $x^3 + x^2 + 1 | P(x) + 1$.
- (14) Over an integral domain, factor theorem: $P(\alpha) = 0$ iff $x \alpha \mid P(x)$.
- (15) Unique factorization for $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Fundamental theorem of algebra for \mathbb{R}, \mathbb{C} .
- (16) For what n is $x^{4n} 2x^n + 1$ divisible by $x^2 + 1$?
- (17) Identity theorem. If deg $\leq n$ polynomials P, Q have $P(\alpha_i) = Q(\alpha_i), i = 0, \dots, n$, then P = Q.
- (18) Find all $P \in \mathbb{R}[X]$ with $P(x^2 + 1) = P(x)^2 + 1$ and P(0) = 0.
- (19) Gauss' Lemma for \mathbb{Z} (a rational factorization produces an integer factorization)
- (20) Viete relations, relating symmetric polynomials of roots to coefficients. Find polynomial for the squares of roots of $x^2 + ax + b$.
- (21) $a_n x^n + \dots + a_3 x^3 + x^2 + x + 1$ does not have all real roots.
- (22) Wilson's theorem $(p-1)! \equiv -1 \pmod{p}$.

Series.

- (1) $a + ax + \cdots + ax^n$, then as $x \to \infty$. Define partial sums.
- (2) $\cos \theta + \cdots + \cos n\theta$.
- (3) Telescoping. $\sum a_n$, with $a_n = b_{n-1} b_n$. If $b_n \to 0$, then converges.
- (4) $\sum \frac{1}{n(n+1)}$.
- (5) Prove $F_1 + F_2 + \dots + F_n = F_{n+2} 1.$ (6) $\prod_{n=2}^{\infty} \frac{n^3 1}{n^3 + 1}.$

- (7) Series for $(1+x)^n$. $\sum_i {n \choose i}$, $\sum_i (-1)^i {n \choose i}$, $\sum_k {m \choose r-k} {n \choose k} = {m+n \choose r}$. (8) Taylor series. Recalls (finite) Taylor's theorem. Do e^x , $\cos x$, $\sin x$, $\log(1+x)$, $(1+x)^r$ (for arbitrary $r \neq 0$).
- (9) Geometric again $\sum x^n = 1/(1-x)$. Do $\sum nx^{n-1}, \sum x^n/n$.
- (10) e is irrational.
- (11) Power series $\sum_{n} a_n x^n$. Radius of convergence. (12) $\sum F_n/3^n$. Then write $f(x) = \sum_{n\geq 0} F_n x^n = x + x^2 + 2x^3 + \cdots$, and by recurrence, $f(x) = \frac{x}{1-x-x^2}$. Combinatorics.
- (1) n!, permutation of n elements, number of bijective functions $\{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$.
- (2) n^k , k ordered (not necessarily distinct) elements from $\{1, \ldots, n\}$, number of functions $\{1, \ldots, k\} \rightarrow 0$ $\{1, \ldots, n\}$. Number of 4-letter words 26^4 .
- (3) n!/(n-k)!, k ordered distinct elements from $\{1,\ldots,n\}$, number of injective functions $\{1,\ldots,k\} \rightarrow (1,\ldots,k)$ $\{1, \ldots, n\}.$
- (4) $\binom{n}{k}$, k unordered distinct elements from $\{1, \ldots, n\}$, number of (strictly) increasing functions $\{1, \ldots, k\} \rightarrow$ $\{1, \ldots, n\}.$ (5) $\binom{n+k-1}{k}$, k unordered (not necessarily distinct) elements from $\{1, \ldots, n\}$, number of (not necessarily
- strictly) increasing functions $\{1, \ldots, k\} \rightarrow \{1, \ldots, n\}$, same as number of strictly increasing functions $\{1, \dots, k\} \to \{1, \dots, n+k-1\}.$ (6) $\binom{n}{k} = \binom{n}{n-k}$, chosen set vs its complement.

- (7) $k\binom{n}{k} = n\binom{n-1}{k-1}$, a set and an element in it. (8) $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, a fixed element is chosen or not, Pascal's triangle.
- (9) $\sum_{k} {m \choose r-k} {n \choose k} = {m+n \choose r}$, choose r elements from m elements and n elements.
- (10) $\sum k \binom{n}{k}$, differentiate $(1+x)^n$, or use $k \binom{n}{k} = n \binom{n-1}{k-1}$.
- (11) $\sum_{k=1}^{\infty} \frac{1}{k+1} \binom{n}{k}$, integrate, or use $\frac{1}{n+1} \binom{n+1}{k+1} = \frac{1}{k+1} \binom{n}{k}$. (12) $\binom{n+k+1}{k} = \binom{n}{0} + \binom{n+1}{1} + \dots + \binom{n+k}{k}$. Induct on k. Alternatively, choose a subset S of size k from $\{1, \dots, n+k+1\}$, and break it up by the largest number outside of S.
- (13) Principle of inclusion exclusion.
- (14) Number of surjective functions $\{1, \ldots, k\} \to \{1, \ldots, n\}$. If A_i is the set of functions that don't hit i, then the number is $n^k - |A_1 \cup \cdots A_n|$. Use inclusion exclusion to get $\sum_i (-1)^i {n \choose i} (n-i)^k$.

Recurrences.

- (1) Fibonacci sequence $f(x) = \sum F_n x^n$, $f(x) = \frac{x}{1-x-x^2}$. Break into partial fractions, $\frac{x}{1-x-x^2} = \frac{A}{1-\alpha x} + \frac{B}{1-\beta x}$, where α, β solutions to $z^2 z 1$ (characteristic equation). Get $F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n \left(\frac{1+\sqrt{5}}{2} \right)^n \right)$.
- (2) Number of ways of tiling $2 \times n$ board with 2×1 dominoes, F_{n+1} .
- (3) General linear recurrences. Distinct roots, repeated roots.
- (4) $a_n = 4a_{n-1} 4a_{n-2}, a_0 = a_1 = 1.$
- (5) $a_n = 3a_{n-1} 4a_{n-3}, a_0 = 30, a_1 = -10, a_2 = 20.$
- (6) Linear recurrence with additional term. General solution plus one particular solution. $a_n = 3a_{n-1} + 1$. (7) Putnam problem, $a_1 = 1, a_2 = 2, a_3 = 24, a_n = \frac{6a_{n-1}^2a_{n-3} 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}$. Show a_n is an integer divisible by n.
- (8) Catalan numbers, C_n is number of ways of parenthesizing n+1 variables with n-1 bracket pairs, number of binary trees with n+1 leaves, number of crossingless matchings on 2n strands, number of paths from (0,0) to (n,n) on or below the diagonal.
- (9) Recurrence $C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k-1}$. So if $f(x) = \sum C_n x^n$, $1 + x f(x)^2 = f(x)$, $f(x) = \frac{1 \sqrt{1 4x}}{2x}$. Do expansion to get $C_n = \frac{1}{n+1} {2n \choose n}$.

4

Probability.

- (1) Probability a function $\{1, 2, 3\} \rightarrow \{1, 2, 3, 4, 5\}$ is injective.
- (2) Cashier (with no money initially) is selling 2n \$5 tickets, and n people bring \$5 notes, and n people bring \$10 notes. Probability of success $\frac{1}{n+1}$.
- (3) Probability 2 people have the same birthday, more likely than not at 23 people.
- (4) Real number picked from [0, 1], probability it is less than 1/3? Need to assume picked uniformly.
- (5) Probability a point from $[0,1]^2$ is within distance 1/5 to the middle?
- (6) Pick $x, y \in [0, 1]$, probability $y \leq x^2$? Assume picked uniformly and independently.
- (7) Two people arrive (uniformly) between 4 and 5, and each waits 15min and then leaves. Probability they will meet.
- (8) Length one needle dropped on infinitely many horizontal lines at distance 2 apart. Probability it hits a line.
- (9) Cut a length d bar into three pieces. Probability they form a triangle. If we picked 2 points x, y (wlog x < y) simultaneously and cut there, each of the sidelengths x, y x, d y has to be less than the semiperimeter d/2. But if first cut at one point x (wlog x > d/2), then cut the larger piece at αx , then each of the side lengths $\alpha x, (1 \alpha)x, d x$ is less than d/2.

Geometry.

- (1) Medians of a triangle intersect by Euclidean geometry.
- (2) Same using coordinate geometry. Take $A = (a_1, a_2)$, similarly.
- (3) By translation, rotation, scaling, can assume B = (0, 0), C = (1, 0).
- (4) Drop perpendiculars PA, PB, PC from P = (a, b) to a parabola. The centroid of ΔABC is on the axis.
- (5) Find the slope one tangents to the ellipse $3x^2 + y^2 = 3$.
- (6) Vector addition, points between two points, $\alpha \vec{v} + (1 \alpha) \vec{w}$.
- (7) Medians intersect using vectors.
- (8) D, E, F chosen on the sides of ΔABC with AF/AB = BD/BC = CE/CA. Centroids of ΔABC and ΔDEF agree.
- (9) AB = AC, D midpoint of BC, DE perpendicular to AC, F midpoint of DE. Prove $AF \perp BE$.
- (10) Suppose altitudes AP and BQ of a tetrahedron ABCD are coplanar. Show $AB \perp CD$.
- (11) ABCD parallelogram, F midpoint of CD, AF intersects BD in E. Prove DE = DB/3.
- (12) Complex conjugates, Cartesian coordinates for addition, polar coordinates for multiplication, unit circle, roots of unity.
- (13) Find z_3 , given two other points z_1, z_2 of an equilateral triangle, $z_3 = -z_1\omega z_2\omega^2$.
- (14) Draw equilaterals triangles *BDC*, *CEA*, *AFB* outside a triangle *ABC*. Show centroids of the three new triangles form an equilateral triangle.
- (15) P, Q, R, S centers of squares drawn outside a quadrilateral ABCD. Show $PR \perp QS$ and |PR| = |QS|.
- (16) Regular polygon $A_1 A_2 \cdots A_n$ of circumradius r, P some other point on the circumcircle. Show $\sum_k |PA_k|^2 = 2nr^2$.

Analysis.

- (1) Continuity, different definitions, $\sin \frac{1}{r}$ discontinuous.
- (2) Intermediate value property (IVT), extreme value property.
- (3) Given two polygons, there is a line that cuts both in equal areas.
- (4) Continuous f with f(x+y) = f(x) + f(y) must be f(x) = ax.
- (5) Continuous f with $f(x) = f(x^2)$ must be constant.
- (6) A runner runs 6 miles ins 30 minutes. Show he ran one mile in exactly 5 minutes.
- (7) Find all continuous functions $f: [0, \infty) \to \mathbb{R}$ with f(xy) = xf(y) + yf(x).
- (8) Example of (discontinuous) function with f(x+y) = f(x) + f(y) but $f(x) \neq ax$.
- (9) Derivatives. $x^2 \sin \frac{1}{x}$, f' exists but is not continuous.
- (10) Rolle's theorem, mean value theorem, Taylor's theorem.
- (11) $f = x^3 3x + a$ cannot have more than one zero in [-1, 1].
- (12) Show $4ax^3 + 3bx^2 + 2cx (a+b+c)$ has a root in [0,1].
- (13) P, Q points on unit circle, R perpendicular from Q to the tangent through P, maximize area of ΔPQR .
- (14) Putnam problem, show all roots of $P(x) = 1 + 8x + 16x^2 + 8x^3 + x^4$ are real.
- (15) Find number of solutions of $x^2 x \sin x \cos x = 0$.

- (16) Find $\int_2^4 \frac{\sqrt{\ln(9-x)} \, dx}{\sqrt{\ln(9-x) + \sqrt{\ln(x+3)}}}.$
- (17) L'Hospital, f/g, both going to zero, or both going to infinity, $\lim_{x\to 0} (\frac{1}{\sin x} \frac{1}{x})$.
- (18) $\lim_{n \to \infty} (1 + \frac{1}{n})^n$.
- (19) $\lim_{x\to 0} x^x$,
- (19) $\lim_{x\to 0} x$, (20) Fundamental theorem of calculus, $\lim_{x\to 0} \frac{1}{x} \int_0^x (1+\sin 2t)^{1/t} dt$. (21) Find all f satisfying $f(x) = \int_0^x f(t) dt + 1$. (22) $\int_0^x f(t) dt = \int_x^1 t^2 f(t) dt + x^{16}/8 + x^{18}/9 + C$. (23) $\lim_{n\to\infty} \left(\frac{1}{2n+1} + \dots + \frac{1}{3n}\right)$. (24) $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{\sqrt{k^2+n^2}}$. (25) $\lim_{n\to\infty} \frac{\sqrt{1+\sqrt{2}+\dots+\sqrt{n}}}{\sqrt{n^3}}$.

- (26) Find integral part (floor) of $S = \sum_{1}^{10^9} n^{-2/3}$. (27) f differentiable, f(0) = 0, and f' strictly increasing (don't know if f'' exists). Show f(x)/x is strictly (29) Find $I = \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$. (29) Putnam problem, $f: [1,3] \to \mathbb{R}, |f(x)| \le 1, \int_1^3 f(x) dx = 0$. Maximum value of $\int_1^3 \frac{f(x)}{x} dx$.