Worksheet 4

Problem 3

Let V=CV = \C be the vector space of complex numbers over the field R\R. Define the function T ⁣:VV\func{T}{V}{V} by T(z)=zT\p{z} = \conj{z}, where z\conj{z} is the complex conjugate of zz.

  1. Prove that TT is additive.
  2. Prove that TT is linear.
  3. Let β={1,i}\beta = \set{1, i}. Prove that β\beta is a basis of VV over R\R.
  4. Compute [T]β\br{T}_\beta.
Solution.

Complex conjugation is defined as follows: given zCz \in \C, we can always write z=a+biz = a + bi, where a,bRa, b \in \R. Then

zabi.\conj{z} \coloneqq a - bi.
  1. Let z,wCz, w \in \C. Then there exist a,b,c,dRa, b, c, d \in \R such that z=a+biz = a + bi and w=c+diw = c + di. Recall that with this notation, addition in C\C is defined as z+w=(a+c)+(b+d)iz + w = \p{a + c} + \p{b + d}i. Thus,

    T(z+w)=z+w=(a+c)+(b+d)i=a+c(b+d)i=(abi)+(cdi)=z+w=T(z)+T(w).\begin{aligned} T\p{z + w} &= \conj{z + w} \\ &= \conj{\p{a + c} + \p{b + d}i} \\ &= a + c - \p{b + d}i \\ &= \p{a - bi} + \p{c - di} \\ &= \conj{z} + \conj{w} \\ &= T\p{z} + T\p{w}. \end{aligned}
  2. Let z=a+biCz = a + bi \in \C and let cRc \in \R. Note that by definition, cz=ca+cbicz = ca + cbi, and that ca,cbRca, cb \in \R. Thus,

    T(cz)=cz=ca+cbi=cacbi=c(abi)=cz=cT(z).\begin{aligned} T\p{cz} &= \conj{cz} \\ &= \overline{ca + cbi} \\ &= ca - cbi \\ &= c\p{a - bi} \\ &= c \conj{z} \\ &= cT\p{z}. \end{aligned}
  3. By definition, β\beta spans VV (every complex number can be written in the form a+bia + bi, where a,bRa, b \in \R). We only need to show that β\beta is linearly independent. Assume that z=a+bi=0z = a + bi = 0 for some a,bRa, b \in \R. Then because TT is linear, we have T(z)=0T\p{z} = 0. Thus,

    {0=z+T(z)=(a+bi)+(abi)=2a,0=zT(z)=(a+bi)(abi)=2bi.\begin{cases} 0 = z + T\p{z} = \p{a + bi} + \p{a - bi} = 2a, \\ 0 = z - T\p{z} = \p{a + bi} - \p{a - bi} = 2bi. \end{cases}

    Thus, a=b=0a = b = 0 (since 202 \neq 0 and i0i \neq 0 in C\C).

  4. Recall that

    [T]β=([T(1)]β[T(i)]β),\br{T}_\beta = \begin{pmatrix} \vert & \vert \\ \br{T\p{1}}_\beta & \br{T\p{i}}_\beta \\ \vert & \vert \end{pmatrix},

    so we just need to write T(1)T\p{1} and T(i)T\p{i} as linear combinations of β\beta:

    T(1)=1=1+0i    [T(1)]β=(10)T(i)=i=0+(1)i    [T(i)]β=(01)\begin{aligned} T\p{1} = 1 = 1 + 0i &\implies \br{T\p{1}}_\beta = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ T\p{i} = -i = 0 + \p{-1}i &\implies \br{T\p{i}}_\beta = \begin{pmatrix} \phantom{-}0 \\ -1 \end{pmatrix} \end{aligned}

    Putting everything together,

    [T]β=(1001).\br{T}_\beta = \begin{pmatrix} 1 & \phantom{-}0 \\ 0 & -1 \end{pmatrix}.

Problem 5

Let VV be a vector space of dimension nn, let T ⁣:VV\func{T}{V}{V} be a linear function. Suppose that WW is a TT-invariant subspace of VV with dimension kk. Show that there exists a basis β\beta of VV such that

[T]β=(ABOC),\br{T}_\beta = \begin{pmatrix} A & B \\ O & C \end{pmatrix},

where AA is a k×kk \times k matrix, BB is a k×(nk)k \times \p{n - k} matrix, CC is an (nk)×(nk)\p{n - k} \times \p{n - k} matrix, and OO is the (nk)×k\p{n - k} \times k zero matrix.

Solution.

If β={v1,v2,,vn}\beta = \set{v_1, v_2, \ldots, v_n} is a basis of VV, then recall that

[T]β=([T(v1)]β[T(v2)]β[T(vn)]β).\br{T}_\beta = \begin{pmatrix} \vert & \vert & & \vert \\ \br{T\p{v_1}}_\beta & \br{T\p{v_2}}_\beta & \cdots & \br{T\p{v_n}}_\beta \\ \vert & \vert & & \vert \\ \end{pmatrix}.

So we need to find a basis β\beta such that if 1ik1 \leq i \leq k, then

[T(vi)]β=(a1ia2iaki00)    T(vi)=a1iv1+a2iv2++akivk+0vk+1++0vn,\br{T\p{v_i}}_\beta = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ki} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \iff T\p{v_i} = a_{1i} v_1 + a_{2i} v_2 + \cdots + a_{ki} v_k + 0v_{k+1} + \cdots + 0v_n,

i.e., a basis such that T(vi)T\p{v_i} can be written as a linear combination of just the first kk basis vectors.

Let {v1,v2,,vk}\set{v_1, v_2, \ldots, v_k} be a basis of WW, and extend this to a basis β={v1,v2,,vk,vk+1,,vn}\beta = \set{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n} of VV. Let 1ik1 \leq i \leq k. Since WW is TT-invariant and viWv_i \in W, this means that T(vi)WT\p{v_i} \in W. But {v1,v2,,vk}\set{v_1, v_2, \ldots, v_k} is a basis of WW, so in particular, W=span{v1,v2,,vk}W = \span\set{v_1, v_2, \ldots, v_k}. Thus, by definition of span, there exist scalars a1i,a2i,,akiFa_{1i}, a_{2i}, \ldots, a_{ki} \in \F such that

T(vi)=a1iv1+a2iv2++akivk=a1iv1+a2iv2++akivk+0vk+1++0vn.\begin{aligned} T\p{v_i} &= a_{1i} v_1 + a_{2i} v_2 + \cdots + a_{ki} v_k \\ &= a_{1i} v_1 + a_{2i} v_2 + \cdots + a_{ki} v_k + 0v_{k+1} + \cdots + 0v_n. \end{aligned}

Hence, the claim holds with AA defined by Aij=aijA_{ij} = a_{ij}.

Note that we can always write TT as an n×nn \times n matrix, so we don't need to deal with BB or CC since we didn't make any assumptions on the last nkn - k columns of [T]β\br{T}_\beta. We only needed to deal with the first kk columns and show that they have the special form above.