Integrability of 1f\frac{1}{f}

Table of Contents

Swapping Argument

This first section isn't too important, but I figured it'd be good for you to see the precise statement of the swapping argument done in class. (I did this in office hours, but I really overcomplicated it and made a mistake proving it, but this version should be correct.)

Lemma

Let IRI \subseteq \R be a (non-empty) interval and h ⁣:IR\func{h}{I}{\R} be a function such that h(x,y)=h(y,x)h\p{x, y} = -h\p{y, x} for all x,yIx, y \in I. Then

supx,yIh(x,y)=supx,yIh(x,y).\sup_{x, y \in I} h\p{x, y} = \sup_{x, y \in I} \abs{h\p{x, y}}.
Proof.

Since h(x,y)h(x,y)h\p{x, y} \leq \abs{h\p{x, y}}, we already have

supx,yIh(x,y)supx,yIh(x,y).\sup_{x, y \in I} h\p{x, y} \leq \sup_{x, y \in I} \abs{h\p{x, y}}.

For the reverse inequality, let u,vIu, v \in I. Then there are two cases: h(u,v)0h\p{u, v} \geq 0 and h(u,v)<0h\p{u, v} < 0. In the first case,

h(u,v)=h(u,v)supx,yIh(x,y).\abs{h\p{u, v}} = h\p{u, v} \leq \sup_{x, y \in I} h\p{x, y}.

In the second case,

h(u,v)=h(u,v)=h(v,u)supx,yIh(x,y).\abs{h\p{u, v}} = -h\p{u, v} = h\p{v, u} \leq \sup_{x, y \in I} h\p{x, y}.

Thus, we have established the inequality

h(u,v)supx,yIh(x,y)\abs{h\p{u, v}} \leq \sup_{x, y \in I} h\p{x, y}

for all u,vIu, v \in I, which proves the lemma. \square

In the problem below, we will use this lemma twice: once on the function h(x,y)=1f(x)1f(y)h\p{x, y} = \frac{1}{f\p{x}} - \frac{1}{f\p{y}} and again on h(x,y)=f(x)f(y)h\p{x, y} = f\p{x} - f\p{y}. The lemma will tell us

supx,yI(1f(x)1f(y))=supx,yI1f(x)1f(y)supx,yI(f(x)f(y))=supx,yIf(x)f(y).\begin{gathered} \sup_{x, y \in I} \p{\frac{1}{f\p{x}} - \frac{1}{f\p{y}}} = \sup_{x, y \in I} \abs{\frac{1}{f\p{x}} - \frac{1}{f\p{y}}} \\[4ex] \sup_{x, y \in I} \p{f\p{x} - f\p{y}} = \sup_{x, y \in I} \abs{f\p{x} - f\p{y}}. \end{gathered}

The Problem

Proposition

Assume f ⁣:[a,b]R\func{f}{\br{a,b}}{\R} is a Riemann integrable function and that there exists c>0c > 0 such that f(x)c\abs{f\p{x}} \geq c for all x[a,b]x \in \br{a, b}. Then 1f\frac{1}{f} is also Riemann integrable.

Scratchwork: Given ε>0\epsilon > 0, we need to find a partition PP of [a,b]\br{a, b} such that

U(1f,P)L(1f,P)<ε.U\p{\frac{1}{f}, P} - L\p{\frac{1}{f}, P} < \epsilon.

The only real fact we have to work with is that ff is Riemann integrable, so we need to relate U(1f,P)L(1f,P)U\p{\frac{1}{f}, P} - L\p{\frac{1}{f}, P} to (f,P)L(f,P)\p{f, P} - L\p{f, P}. Let PP be an partition of [a,b]\br{a, b}. Then

U(1f,P)L(1f,P)=k=1n[M(1f,[tk1,tk])m(1f,[tk1,tk])](tktk1).U\p{\frac{1}{f}, P} - L\p{\frac{1}{f}, P} = \sum_{k=1}^n \br{M\p{\frac{1}{f}, \br{t_{k-1}, t_k}} - m\p{\frac{1}{f}, \br{t_{k-1}, t_k}}} \p{t_k - t_{k-1}}.

Let Ik=[tk1,tk]I_k = \br{t_{k-1}, t_k}. Our goal is to bound M(1f,Ik)m(1f,Ik)M\p{\frac{1}{f}, I_k} - m\p{\frac{1}{f}, I_k} by (a constant independent of kk and PP) times M(f,Ik)m(f,Ik)M\p{f, I_k} - m\p{f, I_k}.

M(1f,Ik)m(1f,Ik)=supxIk1f(x)+supyIk(1f(y))=supx,yIk(1f(x)1f(y))=supx,yIk1f(x)1f(y)(Lemma)=supx,yIkf(x)f(y)f(x)f(y)1c2supx,yIkf(x)f(y)(1f(x)1c)=1c2supx,yIk(f(x)f(y))(Lemma again)=1c2[supxIkf(x)infyIkf(y)]=1c2[M(f,Ik)m(f,Ik)].\begin{aligned} M\p{\frac{1}{f}, I_k} - m\p{\frac{1}{f}, I_k} &= \sup_{x \in I_k} \frac{1}{f\p{x}} + \sup_{y \in I_k} \p{-\frac{1}{f\p{y}}} \\ &= \sup_{x, y \in I_k} \p{\frac{1}{f\p{x}} - \frac{1}{f\p{y}}} \\ &= \sup_{x, y \in I_k} \abs{\frac{1}{f\p{x}} - \frac{1}{f\p{y}}} && \p{\text{Lemma}} \\ &= \sup_{x, y \in I_k} \abs{\frac{f\p{x} - f\p{y}}{f\p{x} f\p{y}}} \\ &\leq \frac{1}{c^2} \sup_{x, y \in I_k} \abs{f\p{x} - f\p{y}} && \p{\frac{1}{\abs{f\p{x}}} \leq \frac{1}{c}} \\ &= \frac{1}{c^2} \sup_{x, y \in I_k} \p{f\p{x} - f\p{y}} && \p{\text{Lemma again}} \\ &= \frac{1}{c^2} \br{\sup_{x \in I_k} f\p{x} - \inf_{y \in I_k} f\p{y}} \\ &= \frac{1}{c^2} \br{M\p{f, I_k} - m\p{f, I_k}}. \end{aligned}

This tells us how to pick our partition.

Proof.

Let ε>0\epsilon > 0. Since ff is Riemann integrable, there exists a partition PP of [a,b]\br{a, b} such that

U(f,P)L(f,P)<c2ε.U\p{f, P} - L\p{f, P} < c^2 \varepsilon.

By the calculation above,

U(1f,P)L(1f,P)=k=1n[M(1f,[tk1,tk])m(1f,[tk1,tk])]1c2[M(f,Ik)m(f,Ik)](tktk1)1c2k=1n[M(f,Ik)m(f,Ik)](tktk1)=1c2[U(f,P)L(f,P)]<1c2c2ε=ε.\begin{aligned} U\p{\frac{1}{f}, P} - L\p{\frac{1}{f}, P} &= \sum_{k=1}^n \underbrace{\br{M\p{\frac{1}{f}, \br{t_{k-1}, t_k}} - m\p{\frac{1}{f}, \br{t_{k-1}, t_k}}}}_{\leq \frac{1}{c^2} \br{M\p{f, I_k} - m\p{f, I_k}}} \p{t_k - t_{k-1}} \\ &\leq \frac{1}{c^2} \sum_{k=1}^n \br{M\p{f, I_k} - m\p{f, I_k}} \p{t_k - t_{k-1}} \\ &= \frac{1}{c^2} \br{U\p{f, P} - L\p{f, P}} \\ &< \frac{1}{c^2} \cdot c^2\epsilon \\ &= \epsilon. \end{aligned}

\square