Integrability of 1 f \frac{1}{f} f 1
Table of Contents
Swapping Argument
This first section isn't too important, but I figured it'd be good for you to see the precise statement of the swapping argument done in class. (I did this in office hours, but I really overcomplicated it and made a mistake proving it, but this version should be correct.)
Lemma
Let I ⊆ R I \subseteq \R I ⊆ R be a (non-empty) interval and h : I → R \func{h}{I}{\R} h : I → R be a function such that h ( x , y ) = − h ( y , x ) h\p{x, y} = -h\p{y, x} h ( x , y ) = − h ( y , x ) for all x , y ∈ I x, y \in I x , y ∈ I . Then
sup x , y ∈ I h ( x , y ) = sup x , y ∈ I ∣ h ( x , y ) ∣ . \sup_{x, y \in I} h\p{x, y} = \sup_{x, y \in I} \abs{h\p{x, y}}. x , y ∈ I sup h ( x , y ) = x , y ∈ I sup ∣ h ( x , y ) ∣ .
Proof.
Since h ( x , y ) ≤ ∣ h ( x , y ) ∣ h\p{x, y} \leq \abs{h\p{x, y}} h ( x , y ) ≤ ∣ h ( x , y ) ∣ , we already have
sup x , y ∈ I h ( x , y ) ≤ sup x , y ∈ I ∣ h ( x , y ) ∣ . \sup_{x, y \in I} h\p{x, y} \leq \sup_{x, y \in I} \abs{h\p{x, y}}. x , y ∈ I sup h ( x , y ) ≤ x , y ∈ I sup ∣ h ( x , y ) ∣ .
For the reverse inequality, let u , v ∈ I u, v \in I u , v ∈ I . Then there are two cases: h ( u , v ) ≥ 0 h\p{u, v} \geq 0 h ( u , v ) ≥ 0 and h ( u , v ) < 0 h\p{u, v} < 0 h ( u , v ) < 0 . In the first case,
∣ h ( u , v ) ∣ = h ( u , v ) ≤ sup x , y ∈ I h ( x , y ) . \abs{h\p{u, v}} = h\p{u, v} \leq \sup_{x, y \in I} h\p{x, y}. ∣ h ( u , v ) ∣ = h ( u , v ) ≤ x , y ∈ I sup h ( x , y ) .
In the second case,
∣ h ( u , v ) ∣ = − h ( u , v ) = h ( v , u ) ≤ sup x , y ∈ I h ( x , y ) . \abs{h\p{u, v}} = -h\p{u, v} = h\p{v, u} \leq \sup_{x, y \in I} h\p{x, y}. ∣ h ( u , v ) ∣ = − h ( u , v ) = h ( v , u ) ≤ x , y ∈ I sup h ( x , y ) .
Thus, we have established the inequality
∣ h ( u , v ) ∣ ≤ sup x , y ∈ I h ( x , y ) \abs{h\p{u, v}} \leq \sup_{x, y \in I} h\p{x, y} ∣ h ( u , v ) ∣ ≤ x , y ∈ I sup h ( x , y )
for all u , v ∈ I u, v \in I u , v ∈ I , which proves the lemma.
□ \square □
In the problem below, we will use this lemma twice: once on the function h ( x , y ) = 1 f ( x ) − 1 f ( y ) h\p{x, y} = \frac{1}{f\p{x}} - \frac{1}{f\p{y}} h ( x , y ) = f ( x ) 1 − f ( y ) 1 and again on h ( x , y ) = f ( x ) − f ( y ) h\p{x, y} = f\p{x} - f\p{y} h ( x , y ) = f ( x ) − f ( y ) . The lemma will tell us
sup x , y ∈ I ( 1 f ( x ) − 1 f ( y ) ) = sup x , y ∈ I ∣ 1 f ( x ) − 1 f ( y ) ∣ sup x , y ∈ I ( f ( x ) − f ( y ) ) = sup x , y ∈ I ∣ f ( x ) − f ( y ) ∣ . \begin{gathered}
\sup_{x, y \in I} \p{\frac{1}{f\p{x}} - \frac{1}{f\p{y}}} = \sup_{x, y \in I} \abs{\frac{1}{f\p{x}} - \frac{1}{f\p{y}}} \\[4ex]
\sup_{x, y \in I} \p{f\p{x} - f\p{y}} = \sup_{x, y \in I} \abs{f\p{x} - f\p{y}}.
\end{gathered} x , y ∈ I sup ( f ( x ) 1 − f ( y ) 1 ) = x , y ∈ I sup ∣ ∣ f ( x ) 1 − f ( y ) 1 ∣ ∣ x , y ∈ I sup ( f ( x ) − f ( y ) ) = x , y ∈ I sup ∣ f ( x ) − f ( y ) ∣ .
The Problem
Proposition
Assume f : [ a , b ] → R \func{f}{\br{a,b}}{\R} f : [ a , b ] → R is a Riemann integrable function and that there exists c > 0 c > 0 c > 0 such that ∣ f ( x ) ∣ ≥ c \abs{f\p{x}} \geq c ∣ f ( x ) ∣ ≥ c for all x ∈ [ a , b ] x \in \br{a, b} x ∈ [ a , b ] . Then 1 f \frac{1}{f} f 1 is also Riemann integrable.
Scratchwork : Given ε > 0 \epsilon > 0 ε > 0 , we need to find a partition P P P of [ a , b ] \br{a, b} [ a , b ] such that
U ( 1 f , P ) − L ( 1 f , P ) < ε . U\p{\frac{1}{f}, P} - L\p{\frac{1}{f}, P} < \epsilon. U ( f 1 , P ) − L ( f 1 , P ) < ε .
The only real fact we have to work with is that f f f is Riemann integrable, so we need to relate U ( 1 f , P ) − L ( 1 f , P ) U\p{\frac{1}{f}, P} - L\p{\frac{1}{f}, P} U ( f 1 , P ) − L ( f 1 , P ) to ( f , P ) − L ( f , P ) \p{f, P} - L\p{f, P} ( f , P ) − L ( f , P ) . Let P P P be an partition of [ a , b ] \br{a, b} [ a , b ] . Then
U ( 1 f , P ) − L ( 1 f , P ) = ∑ k = 1 n [ M ( 1 f , [ t k − 1 , t k ] ) − m ( 1 f , [ t k − 1 , t k ] ) ] ( t k − t k − 1 ) . U\p{\frac{1}{f}, P} - L\p{\frac{1}{f}, P}
= \sum_{k=1}^n \br{M\p{\frac{1}{f}, \br{t_{k-1}, t_k}} - m\p{\frac{1}{f}, \br{t_{k-1}, t_k}}} \p{t_k - t_{k-1}}. U ( f 1 , P ) − L ( f 1 , P ) = k = 1 ∑ n [ M ( f 1 , [ t k − 1 , t k ] ) − m ( f 1 , [ t k − 1 , t k ] ) ] ( t k − t k − 1 ) .
Let I k = [ t k − 1 , t k ] I_k = \br{t_{k-1}, t_k} I k = [ t k − 1 , t k ] . Our goal is to bound M ( 1 f , I k ) − m ( 1 f , I k ) M\p{\frac{1}{f}, I_k} - m\p{\frac{1}{f}, I_k} M ( f 1 , I k ) − m ( f 1 , I k ) by (a constant independent of k k k and P P P ) times M ( f , I k ) − m ( f , I k ) M\p{f, I_k} - m\p{f, I_k} M ( f , I k ) − m ( f , I k ) .
M ( 1 f , I k ) − m ( 1 f , I k ) = sup x ∈ I k 1 f ( x ) + sup y ∈ I k ( − 1 f ( y ) ) = sup x , y ∈ I k ( 1 f ( x ) − 1 f ( y ) ) = sup x , y ∈ I k ∣ 1 f ( x ) − 1 f ( y ) ∣ ( Lemma ) = sup x , y ∈ I k ∣ f ( x ) − f ( y ) f ( x ) f ( y ) ∣ ≤ 1 c 2 sup x , y ∈ I k ∣ f ( x ) − f ( y ) ∣ ( 1 ∣ f ( x ) ∣ ≤ 1 c ) = 1 c 2 sup x , y ∈ I k ( f ( x ) − f ( y ) ) ( Lemma again ) = 1 c 2 [ sup x ∈ I k f ( x ) − inf y ∈ I k f ( y ) ] = 1 c 2 [ M ( f , I k ) − m ( f , I k ) ] . \begin{aligned}
M\p{\frac{1}{f}, I_k} - m\p{\frac{1}{f}, I_k}
&= \sup_{x \in I_k} \frac{1}{f\p{x}} + \sup_{y \in I_k} \p{-\frac{1}{f\p{y}}} \\
&= \sup_{x, y \in I_k} \p{\frac{1}{f\p{x}} - \frac{1}{f\p{y}}} \\
&= \sup_{x, y \in I_k} \abs{\frac{1}{f\p{x}} - \frac{1}{f\p{y}}}
&& \p{\text{Lemma}} \\
&= \sup_{x, y \in I_k} \abs{\frac{f\p{x} - f\p{y}}{f\p{x} f\p{y}}} \\
&\leq \frac{1}{c^2} \sup_{x, y \in I_k} \abs{f\p{x} - f\p{y}}
&& \p{\frac{1}{\abs{f\p{x}}} \leq \frac{1}{c}} \\
&= \frac{1}{c^2} \sup_{x, y \in I_k} \p{f\p{x} - f\p{y}}
&& \p{\text{Lemma again}} \\
&= \frac{1}{c^2} \br{\sup_{x \in I_k} f\p{x} - \inf_{y \in I_k} f\p{y}} \\
&= \frac{1}{c^2} \br{M\p{f, I_k} - m\p{f, I_k}}.
\end{aligned} M ( f 1 , I k ) − m ( f 1 , I k ) = x ∈ I k sup f ( x ) 1 + y ∈ I k sup ( − f ( y ) 1 ) = x , y ∈ I k sup ( f ( x ) 1 − f ( y ) 1 ) = x , y ∈ I k sup ∣ ∣ f ( x ) 1 − f ( y ) 1 ∣ ∣ = x , y ∈ I k sup ∣ ∣ f ( x ) f ( y ) f ( x ) − f ( y ) ∣ ∣ ≤ c 2 1 x , y ∈ I k sup ∣ f ( x ) − f ( y ) ∣ = c 2 1 x , y ∈ I k sup ( f ( x ) − f ( y ) ) = c 2 1 [ x ∈ I k sup f ( x ) − y ∈ I k inf f ( y ) ] = c 2 1 [ M ( f , I k ) − m ( f , I k ) ] . ( Lemma ) ( ∣ f ( x ) ∣ 1 ≤ c 1 ) ( Lemma again )
This tells us how to pick our partition.
Proof.
Let ε > 0 \epsilon > 0 ε > 0 . Since f f f is Riemann integrable, there exists a partition P P P of [ a , b ] \br{a, b} [ a , b ] such that
U ( f , P ) − L ( f , P ) < c 2 ε . U\p{f, P} - L\p{f, P} < c^2 \varepsilon. U ( f , P ) − L ( f , P ) < c 2 ε .
By the calculation above,
U ( 1 f , P ) − L ( 1 f , P ) = ∑ k = 1 n [ M ( 1 f , [ t k − 1 , t k ] ) − m ( 1 f , [ t k − 1 , t k ] ) ] ⏟ ≤ 1 c 2 [ M ( f , I k ) − m ( f , I k ) ] ( t k − t k − 1 ) ≤ 1 c 2 ∑ k = 1 n [ M ( f , I k ) − m ( f , I k ) ] ( t k − t k − 1 ) = 1 c 2 [ U ( f , P ) − L ( f , P ) ] < 1 c 2 ⋅ c 2 ε = ε . \begin{aligned}
U\p{\frac{1}{f}, P} - L\p{\frac{1}{f}, P}
&= \sum_{k=1}^n \underbrace{\br{M\p{\frac{1}{f}, \br{t_{k-1}, t_k}} - m\p{\frac{1}{f}, \br{t_{k-1}, t_k}}}}_{\leq \frac{1}{c^2} \br{M\p{f, I_k} - m\p{f, I_k}}} \p{t_k - t_{k-1}} \\
&\leq \frac{1}{c^2} \sum_{k=1}^n \br{M\p{f, I_k} - m\p{f, I_k}} \p{t_k - t_{k-1}} \\
&= \frac{1}{c^2} \br{U\p{f, P} - L\p{f, P}} \\
&< \frac{1}{c^2} \cdot c^2\epsilon \\
&= \epsilon.
\end{aligned} U ( f 1 , P ) − L ( f 1 , P ) = k = 1 ∑ n ≤ c 2 1 [ M ( f , I k ) − m ( f , I k ) ] [ M ( f 1 , [ t k − 1 , t k ] ) − m ( f 1 , [ t k − 1 , t k ] ) ] ( t k − t k − 1 ) ≤ c 2 1 k = 1 ∑ n [ M ( f , I k ) − m ( f , I k ) ] ( t k − t k − 1 ) = c 2 1 [ U ( f , P ) − L ( f , P ) ] < c 2 1 ⋅ c 2 ε = ε .
□ \square □