Week 9 Discussion Notes

Table of Contents

Surface Integrals

Surface integrals are similar to line integrals: line integrals are integrals on 1D curves, and surface integrals are integrals on 2D "curves" (i.e., on 2D surfaces). The steps for calculating a surface integral are basically the same, except things are harder just because surfaces live in 3D space.

A vector surface integral is called a flux integral and looks like

SFdS\iint_{\mathscr{S}} \vec{F} \cdot \diff\vec{S}

where S\mathscr{S} is an oriented surface, and the steps to calculate one are:

  1. Parametrize S\mathscr{S} via a function G(u,v)G\p{u, v} with domain D\mathscr{D}.

  2. Calculate the normal vector N(u,v)\vec{N}\p{u, v}, which is either

    Gu×GvorGv×GuG_u \times G_v \quad\text{or}\quad G_v \times G_u

    depending on the orientation of S\mathscr{S}. (Note that Gu×Gv=Gv×GuG_u \times G_v = -G_v \times G_u, so based on the orientation, you may or may not need to multiply your cross product by 1-1.)

  3. Plug in everything to get a 2D integral:

    SFdS=DF(G(u,v))N(u,v)dudv.\iint_{\mathscr{S}} \vec{F} \cdot \diff{\vec{S}} = \iint_{\mathscr{D}} \vec{F}\p{G\p{u, v}} \cdot \vec{N}\p{u, v} \,\diff{u} \,\diff{v}.
  4. Integrate like normal.

Example 1.

Calculate SFdS\displaystyle\iint_{\mathscr{S}} \vec{F} \cdot \diff\vec{S}, with F(x,y,z)=0,3,x\vec{F}\p{x, y, z} = \ang{0, 3, x} and S\mathscr{S} is the part of the sphere x2+y2+z2=9x^2 + y^2 + z^2 = 9 where x0x \geq 0, y0y \geq 0, and z0z \geq 0, with outward pointing normal.

Solution.

First, we need to parametrize this region. Since it's a part of a sphere, we can base our parametrization on spherical coordinates:

G(θ,φ)=ρsinφcosθ,ρsinφsinθ,ρcosφG\p{\theta, \phi} = \ang{\rho\sin\phi\cos\theta, \rho\sin\phi\sin\theta, \rho\cos\phi}

The sphere has radius 33, so ρ=3\rho = 3. To get x0x \geq 0 and y0y \geq 0, we need 0θπ20 \leq \theta \leq \frac{\pi}{2}, and to get z0z \geq 0, we need 0φπ20 \leq \phi \leq \frac{\pi}{2}, so the parametrization is

{G(θ,φ)=3sinφcosθ,3sinφsinθ,3cosφ,D={(θ,φ)|0θπ2, 0φπ2}.\begin{cases} G\p{\theta, \phi} = \ang{3\sin\phi\cos\theta, 3\sin\phi\sin\theta, 3\cos\phi}, \\ \mathscr{D} = \set{\p{\theta, \phi} \st 0 \leq \theta \leq \frac{\pi}{2},\ 0 \leq \phi \leq \frac{\pi}{2}}. \end{cases}

Next, let's calculate N\vec{N}:

Gθ=3sinφsinθ,3sinφcosθ,0Gφ=3cosφcosθ,3cosφsinθ,3sinφGθ×Gφ=9sin2φcosθ,9sin2φsinθ,9sinφcosφ\begin{aligned} G_\theta &= \ang{-3\sin\phi\sin\theta, 3\sin\phi\cos\theta, 0} \\ G_\phi &= \ang{3\cos\phi\cos\theta, 3\cos\phi\sin\theta, -3\sin\phi} \\ G_\theta \times G_\phi &= \ang{-9\sin^2\phi\cos\theta, -9\sin^2\phi\sin\theta, -9\sin\phi\cos\phi} \end{aligned}

To figure out what N\vec{N} is, we need to figure out whether Gθ×GφG_\theta \times G_\phi points inwards or outwards, which we can do by just testing it at a point. We can test it at the point (x,y,z)=(3,0,0)\p{x, y, z} = \p{3, 0, 0}, which corresponds to (θ,φ)=(0,π2)\p{\theta, \phi} = \p{0, \frac{\pi}{2}}, so

Gθ(0,π2)×Gφ(0,π2)=9,0,0,G_\theta\p{0, \frac{\pi}{2}} \times G_\phi\p{0, \frac{\pi}{2}} = \ang{-9, 0, 0},

which points inwards. This means we need to reverse it to get an outward pointing normal, i.e.,

N=Gθ×Gφ=9sin2φcosθ,9sin2φsinθ,9sinφcosφ.\vec{N} = -G_\theta \times G_\phi = \ang{9\sin^2\phi\cos\theta, 9\sin^2\phi\sin\theta, 9\sin\phi\cos\phi}.

Finally, we just plug everything in:

SFdS=DF(G(θ,φ))N(θ,φ)dθdφ=0π20π20,3,3sinφcosθ9sin2φcosθ,9sin2φsinθ,9sinφcosφdθdφ=0π20π227sin2φsinθ+26sin2φcosφcosθdθdφ=2712(3π+4).\begin{aligned} \iint_{\mathscr{S}} \vec{F} \cdot \diff\vec{S} &= \iint_{\mathscr{D}} \vec{F}\p{G\p{\theta, \phi}} \cdot \vec{N}\p{\theta, \phi} \,\diff\theta \,\diff\phi \\ &= \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \ang{0, 3, 3\sin\phi\cos\theta} \cdot \ang{9\sin^2\phi\cos\theta, 9\sin^2\phi\sin\theta, 9\sin\phi\cos\phi} \,\diff\theta \,\diff\phi \\ &= \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} 27\sin^2\phi\sin\theta + 26\sin^2\phi\cos\phi\cos\theta \,\diff\theta \,\diff\phi \\ &= \boxed{\frac{27}{12}\p{3\pi + 4}}. \end{aligned}

(Like always, the hardest part of the problem is getting to the second line, i.e., writing down the exact integral you need to calculate.)