Week 5 Discussion Notes

Table of Contents

Notation

Here's a quick table with the main definitions/notation used:

quantitydescriptionr(t)positionr(t)velocityr(t)speeds(t)=atr(u)duarc lengthT(t)=r(t)r(t)=drdsunit tangentN(t)=T(t)T(t)unit normal\def\arraystretch{1.5} \begin{array}{cll} \hline \text{quantity} &\hspace{1em}& \text{description} \\\hline \vec{r}\p{t} && \text{position} \\ \vec{r}'\p{t} && \text{velocity} \\ \norm{\vec{r}'\p{t}} && \text{speed} \\ \displaystyle s\p{t} = \int_a^t \norm{\vec{r}'\p{u}} \,\diff{u} && \text{arc length} \\[2ex] \displaystyle \vec{T}\p{t} = \frac{\vec{r}'\p{t}}{\norm{\vec{r}'\p{t}}} = \deriv{\vec{r}}{s} && \text{unit tangent} \\[2ex] \displaystyle \vec{N}\p{t} = \frac{\vec{T}'\p{t}}{\norm{\vec{T}'\p{t}}} && \text{unit normal} \\[3.5ex] \hline \end{array}

Formulas for Curvature

Normally, to calculate the curvature κ\kappa from the definition, you need to calculate dTds\deriv{\vec{T}}{s}, which would involve finding the arc-length parametrization. However, using the chain rule, there are formulas that let you calculate it straight from any parametrization r(t)\vec{r}\p{t}:

κ(t)=dTds=dTdtdtds=1r(t)dTdtκ(t)=r(t)×r(t)r(t)3\begin{gathered} \kappa\p{t} = \norm{\deriv{\vec{T}}{\vec{s}}} = \norm{\deriv{\vec{T}}{\vec{t}} \deriv{t}{s}} = \frac{1}{\norm{\vec{r}'\p{t}}} \norm{\deriv{\vec{T}}{\vec{t}}} \\ \kappa\p{t} = \frac{\norm{\vec{r}'\p{t} \times \vec{r}''\p{t}}}{\norm{\vec{r}'\p{t}}^3} \end{gathered}

Generally, the second one is more useful, but sometimes the calculation using the first one is easier. Either way, you'll get the same answer.

Other Formulas

If you read the book, there are other formulas for curvature, but they're all special cases of the second formula above. For example, if you have a parametrization x(t),y(t)\ang{x\p{t}, y\p{t}}, the book tells you the curvature is

κ(t)=x(t)y(t)y(t)x(t)(x(t)2+y(t)2)3/2.\kappa\p{t} = \frac{\abs{x'\p{t}y''\p{t} - y'\p{t}x''\p{t}}}{\p{x'\p{t}^2 + y'\p{t}^2}^{3/2}}.

To derive it, all you have to do is set r(t)=x(t),y(t),0\vec{r}\p{t} = \ang{x\p{t}, y\p{t}, 0} and plug it into the formula:

r(t)=x(t),y(t)r(t)=x(t),y(t),\begin{aligned} \vec{r}'\p{t} &= \ang{x'\p{t}, y'\p{t}} \\ \vec{r}''\p{t} &= \ang{x''\p{t}, y''\p{t}}, \end{aligned}

and we get

r(t)=(x(t)2+y(t)2)1/2r(t)×r(t)=0,0,x(t)y(t)y(t)x(t)=x(t)y(t)y(t)x(t).\begin{aligned} \norm{\vec{r}'\p{t}} &= \p{x'\p{t}^2 + y'\p{t}^2}^{1/2} \\ \norm{\vec{r}'\p{t} \times \vec{r''}\p{t}} &= \norm{\ang{0, 0, x'\p{t}y''\p{t} - y'\p{t}x''\p{t}}} \\ &= \abs{x'\p{t}y''\p{t} - y'\p{t}x''\p{t}}. \end{aligned}

Putting it all together,

κ(t)=r(t)×r(t)r(t)3=x(t)y(t)y(t)x(t)(x(t)2+y(t)2)3/2.\kappa\p{t} = \frac{\norm{\vec{r}'\p{t} \times \vec{r}''\p{t}}}{\norm{\vec{r}'\p{t}}^3} = \frac{\abs{x'\p{t}y''\p{t} - y'\p{t}x''\p{t}}}{\p{x'\p{t}^2 + y'\p{t}^2}^{3/2}}.