Week 0 Discussion Notes

Table of Contents

Trig

Unit Circle

The unit circle is a circle with radius 11. If we have an angle θ\theta, we can draw this picture:

In the image above, the coordinate of the black dot is (cosθ,sinθ)\p{\cos\theta, \sin\theta} by definition. Once you have cosθ\cos\theta and sinθ\sin\theta, we can define every other trig function that we care about:

tanθ=sinθcosθsecθ=1cosθcscθ=1sinθcotθ=1tanθ=cosθsinθ\begin{aligned} \tan\theta &= \frac{\sin\theta}{\cos\theta} \\ \sec\theta &= \frac{1}{\cos\theta} \\ \csc\theta &= \frac{1}{\sin\theta} \\ \cot\theta &= \frac{1}{\tan\theta} = \frac{\cos\theta}{\sin\theta} \end{aligned}

So the moral of the story is that if you know what to do with cosθ\cos\theta and sinθ\sin\theta, you essentially know what to do with every trig function.

Example 1.

Calculate tan2π3\tan\frac{2\pi}{3}.

Solution.

If you're not comfortable with radians, it'll be helpful to convert things to degrees (though I recommend that you try to get comfortable with radians eventually). 2π rad=3602\pi~\mathrm{rad} = 360^\circ (both represent one full rotation), so

2π3 rad3602π rad=120.\frac{2\pi}{3}~\mathrm{rad} \cdot \frac{360^\circ}{2\pi~\mathrm{rad}} = 120^\circ.

This gives us the following triangle:

This is a 30,60,9030, 60, 90 triangle, which has ratios 1,3,21, \sqrt{3}, 2. Since the hypotenuse is 11, we need to divide everything by 22 to get the lengths of the sides of the triangle: 12,32,1\frac{1}{2}, \frac{\sqrt{3}}{2}, 1. So, the coordinate of the point is (12,32)\p{-\frac{1}{2}, \frac{\sqrt{3}}{2}}, which means

cos2π3=12sin2π3=32.\begin{aligned} \cos\frac{2\pi}{3} &= -\frac{1}{2} \\ \sin\frac{2\pi}{3} &= \frac{\sqrt{3}}{2}. \end{aligned}

Looking at the definition above, we can calculate tan2π3\tan\frac{2\pi}{3} from these:

tan2π3=sin2π3cos2π3=3212=3.\tan\frac{2\pi}{3} = \frac{\sin\frac{2\pi}{3}}{\cos\frac{2\pi}{3}} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \boxed{-\sqrt{3}}.

Identities

From the first picture above, we can use the Pythagorean theorem to get

cos2θ+sin2θ=12.\cos^2\theta + \sin^2\theta = 1^2.

If we divide everything by cos2θ\cos^2\theta, we then get

1+sin2θcos2θ=1cos2θ    tan2θ+1=sec2θ.1 + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta} \iff \tan^2\theta + 1 = \sec^2\theta.

Similarly, if we divide everything by sin2θ\sin^2\theta, we get the identity

cot2θ+1=csc2θ.\cot^2\theta + 1 = \csc^2\theta.

These are called the Pythagorean identities because they all come from the Pythagorean theorem. In addition to these, we have the double-angle identities:

sin2θ=2sinθcosθcos2θ=2cos2θ1=12sin2θ.\begin{aligned} \sin{2\theta} &= 2\sin\theta\cos\theta \\ \cos{2\theta} &= 2\cos^2\theta - 1 \\ &= 1 - 2\sin^2\theta. \end{aligned}

The first one isn't super useful, but the second one is. If we solve for cos2θ\cos^2\theta and sin2θ\sin^2\theta, we get

cos2θ=1+cos2θ2sin2θ=1cos2θ2.\begin{aligned} \cos^2\theta &= \frac{1 + \cos{2\theta}}{2} \\ \sin^2\theta &= \frac{1 - \cos{2\theta}}{2}. \end{aligned}

These are very useful identities. When my previous students were stuck on a trig-related integral, these identities were usually what they were missing.

Calculus

Differentiation

For this section, I basically followed my notes from a previous class up to the Integration section. I added a few examples, though:

Example 2.

Let f(x)=x2f\p{x} = x^2. Calculate f(x)f'\p{x} using the definition.

Solution.

We can essentially plug everything into the formula for the definition and simplify:

f(x)=limh0f(x+h)f(x)h=limh0(x+h)2x2h=limh0x2+2xh+h2x2h=limh02xh+h2h=limh0h(2x+h)h=limh0(2x+h)=2x.\begin{aligned} f'\p{x} &= \lim_{h\to0} \frac{f\p{x + h} - f\p{x}}{h} \\ &= \lim_{h\to0} \frac{\p{x + h}^2 - x^2}{h} \\ &= \lim_{h\to0} \frac{x^2 + 2xh + h^2 - x^2}{h} \\ &= \lim_{h\to0} \frac{2xh + h^2}{h} \\ &= \lim_{h\to0} \frac{h\p{2x + h}}{h} \\ &= \lim_{h\to0} \p{2x + h} \\ &= 2x. \end{aligned}

For the last "==" sign, I used the fact that 2x+h2x + h is continuous when hh is the variable.

Example 3.

Prove the quotient rule from the product and chain rules.

Solution.

First, I'm going to let h(x)=1xh\p{x} = \frac{1}{x} so that

h(g(x))=1g(x)andh(x)=1x2.h\p{g\p{x}} = \frac{1}{g\p{x}} \quad\text{and}\quad h'\p{x} = -\frac{1}{x^2}.

Then

ddxf(x)g(x)=ddx(f(x)1g(x))=ddx(f(x)h(g(x)))=f(x)h(g(x))+f(x)(ddxh(g(x)))(product rule)=f(x)h(g(x))+f(x)h(g(x))g(x)(chain rule)=f(x)1g(x)+f(x)(1[g(x)]2)g(x)=f(x)g(x)g(x)g(x)f(x)g(x)[g(x)]2=f(x)g(x)f(x)g(x)[g(x)]2.\begin{aligned} \deriv{}{x} \frac{f\p{x}}{g\p{x}} &= \deriv{}{x} \p{f\p{x} \cdot \frac{1}{g\p{x}}} \\ &= \deriv{}{x} \p{f\p{x} \cdot h\p{g\p{x}}} \\ &= f'\p{x}h\p{g\p{x}} + f\p{x}\p{\deriv{}{x} h\p{g\p{x}}} && \p{\text{product rule}} \\ &= f'\p{x}h\p{g\p{x}} + f\p{x}h'\p{g\p{x}}g'\p{x} && \p{\text{chain rule}} \\ &= f'\p{x} \cdot \frac{1}{g\p{x}} + f\p{x}\p{-\frac{1}{\br{g\p{x}}^2}}g'\p{x} \\ &= \frac{f'\p{x}}{g\p{x}} \cdot \frac{g\p{x}}{g\p{x}} - \frac{f\p{x}g'\p{x}}{\br{g\p{x}}^2} \\ &= \frac{f'\p{x}g\p{x} - f\p{x}g'\p{x}}{\br{g\p{x}}^2}. \end{aligned}