Week 6 Discussion Notes

Table of Contents

Power Series

Power series are a special type of infinite series:

Definition

Let F(x)=n=0an(xc)n\displaystyle F\p{x} = \sum_{n=0}^\infty a_n\p{x - c}^n. FF is called a power series and we call cc the center of FF.

Power series are great because they have a bunch of nice properties (during discussion, I only talked about the first property):

Proposition (properties of power series)

Let F(x)=n=0an(xc)n\displaystyle F\p{x} = \sum_{n=0}^\infty a_n\p{x - c}^n be a power series.

  1. There exists a number R[0,]R \in \br{0, \infty} called the radius of convergence of FF such that if xc<R\abs{x - c} < R, then FF converges absolutely and if xc>R\abs{x - c} > R, then FF diverges. If R=0R = 0, then the series only converges at its center and if R=R = \infty, then FF converges absolutely everywhere.

  2. The coefficients can be expressed in terms of the derivatives of FF:

    an=F(n)(c)n!a_n = \frac{F^{\p{n}}\p{c}}{n!}
  3. You can differentiate term-by-term, i.e., you can pretend the sum isn't there and take the derivative like normal:

    F(x)=n=1nan(xc)n1F'\p{x} = \sum_{n=1}^\infty na_n\p{x - c}^{n-1}

    FF' is also a power series and it has the same radius of convergence as FF (but not necessarily the same interval of convergence).

  4. You can also integrate term-by-term:

    F(x)dx=C+n=0ann+1(xc)n+1\int F\p{x} \,\diff{x} = C + \sum_{n=0}^\infty \frac{a_n}{n+1} \p{x - c}^{n+1}

    Like FF', the antiderivative of FF is a power series with the same radius of convergence as FF (but not necessarily the same interval of convergence).

Example 1.

We've already seen an example of a power series: if we replace rr with xx in the geometric series, then we get

n=0rn=11rn=0xn=11x,\sum_{n=0}^\infty r^n = \frac{1}{1 - r} \rightsquigarrow \sum_{n=0}^\infty x^n = \frac{1}{1 - x},

and this converges if and only if x<1\abs{x} < 1. Thus, the geometric series above is an example of a power series centered at 00 and with interval of convergence (1,1)\p{-1, 1}.

A common type of problem involving power series is finding its interval of convergence:

Example 2.

Find the interval of convergence of n=13nxnn3\displaystyle\sum_{n=1}^\infty \frac{3^n x^n}{n^3}.

Solution.

For these types of questions, there's a step-by-step way to solve them:

  1. Use the ratio or root test to find the radius of convergence.
  2. Check whether the series converges at the endpoints.

For this series, we'll use the ratio test:

limnan+1an=limn3n+1xn+1(n+1)3n33nxn=limn3x(nn+1)3=3x.\begin{aligned} \lim_{n\to\infty} \abs{\frac{a_{n+1}}{a_n}} &= \lim_{n\to\infty} \frac{3^{n+1} \abs{x}^{n+1}}{\p{n+1}^3} \frac{n^3}{3^n \abs{x}^n} \\ &= \lim_{n\to\infty} 3 \abs{x} \p{\frac{n}{n+1}}^3 \\ &= 3\abs{x}. \end{aligned}

The ratio test tells us that the series will converge absolutely if

3x<1    x<13    x(13,13).3\abs{x} < 1 \iff \abs{x} < \frac{1}{3} \iff x \in \p{-\frac{1}{3}, \frac{1}{3}}.

This tells us that the radius of convergence is 13\frac{1}{3}. Now we need to check the endpoints:

x=13x = -\frac{1}{3}:

We get

n=13n(13)nn3=n=1(1)nn3,\sum_{n=1}^\infty \frac{3^n \p{-\frac{1}{3}}^n}{n^3} = \sum_{n=1}^\infty \frac{\p{-1}^n}{n^3},

which converges, for example, by the alternating series test. (Alternatively, you can say that it converges absolutely by the pp-test.)

x=13x = \frac{1}{3}:

We get a similar series in this case:

n=13n(13)nn3=n=11n3,\sum_{n=1}^\infty \frac{3^n \p{\frac{1}{3}}^n}{n^3} = \sum_{n=1}^\infty \frac{1}{n^3},

and this converges by the pp-test.

Thus, the interval of convergence of this power series is

[13,13].\boxed{\br{-\frac{1}{3}, \frac{1}{3}}}.

Convergence Tests

Example 3.

Determine whether n=0nnn4+lnn\displaystyle \sum_{n=0}^\infty \frac{n\sqrt{n}}{n^4 + \ln{n}} converges.

Solution.

Heuristically, lnn\ln{n} grows very, very slow, so if nn is very large,

nnn4+lnnnnn4=1n5/2.\frac{n\sqrt{n}}{n^4 + \ln{n}} \approx \frac{n\sqrt{n}}{n^4} = \frac{1}{n^{5/2}}.

So, we'll try to apply the limit test with bn=1n5/2b_n = \frac{1}{n^{5/2}}, which is summable by the pp-test.

limnnnn4+lnn1n5/2=limnn4n4+lnn1n41n4=limn11+lnnn4=1,\begin{aligned} \lim_{n\to\infty} \frac{\frac{n\sqrt{n}}{n^4 + \ln{n}}}{\frac{1}{n^{5/2}}} &= \lim_{n\to\infty} \frac{n^4}{n^4 + \ln{n}} \cdot \frac{\frac{1}{n^4}}{\frac{1}{n^4}} \\ &= \lim_{n\to\infty} \frac{1}{1 + \frac{\ln{n}}{n^4}} \\ &= 1, \end{aligned}

so the limit test tells us that because n=11n5/2\sum_{n=1}^\infty \frac{1}{n^{5/2}} converges, n=1nnn4+lnn\sum_{n=1}^\infty \frac{n\sqrt{n}}{n^4 + \ln{n}} also converges.

Example 4.

Determine whether n=0cosnπn\displaystyle \sum_{n=0}^\infty \frac{\cos{n\pi}}{\sqrt{n}} converges.

Solution.

The trick for this is to notice that cosnπ=(1)n\cos{n\pi} = \p{-1}^n, so the series is

n=0cosnπn=n=0(1)nn,\sum_{n=0}^\infty \frac{\cos{n\pi}}{\sqrt{n}} = \sum_{n=0}^\infty \frac{\p{-1}^n}{\sqrt{n}},

and this converges by the alternating series test.

Example 5.

Determine whether n=0nsin(1n2)\displaystyle \sum_{n=0}^\infty n\sin\p{\frac{1}{n^2}} converges.

Solution.

Recall from last week the fact that limx0sinxx=1\lim_{x\to0} \frac{\sin{x}}{x} = 1. Heuristically, this means that if x0x \approx 0, then

sinxx1    sinxx.\frac{\sin{x}}{x} \approx 1 \implies \sin{x} \approx x.

Specializing to our problem, if nn is large enough, then 1n20\frac{1}{n^2} \approx 0, so if we plug in x=1n2x = \frac{1}{n^2}, we get

sin(1n2)1n2    nsin(1n2)1n.\sin\p{\frac{1}{n^2}} \approx \frac{1}{n^2} \implies n\sin\p{\frac{1}{n^2}} \approx \frac{1}{n}.

This tells us to try bn=1nb_n = \frac{1}{n} with limit comparison:

limnnsin(1n2)1n=limnsin(1n2)1n2=1.\lim_{n\to\infty} \frac{n\sin\p{\frac{1}{n^2}}}{\frac{1}{n}} = \lim_{n\to\infty} \frac{\sin\p{\frac{1}{n^2}}}{\frac{1}{n^2}} = 1.

But n=11n\sum_{n=1}^\infty \frac{1}{n} diverges by the pp-test, so by the limit comparison test, n=1nsin(1n2)\sum_{n=1}^\infty n\sin\p{\frac{1}{n^2}} also diverges.

Example 6.

Determine whether n=0(1cos(1n))\displaystyle \sum_{n=0}^\infty \p{1 - \cos\p{\frac{1}{n}}} converges.

Solution.

Like the previous example, we'll use a "well-known" limit to do this problem:

limx01cosxx2=12.\lim_{x\to0} \frac{1 - \cos{x}}{x^2} = \frac{1}{2}.

You can prove this as follows:

limx01cosxx21+cosx1+cosx=limx0sin2xx211+cosx=limx0(sinxx)211+cosx=12.\begin{aligned} \lim_{x\to0} \frac{1 - \cos{x}}{x^2} \cdot \frac{1 + \cos{x}}{1 + \cos{x}} &= \lim_{x\to0} \frac{\sin^2{x}}{x^2} \frac{1}{1 + \cos{x}} \\ &= \lim_{x\to0} \p{\frac{\sin{x}}{x}}^2 \frac{1}{1 + \cos{x}} \\ &= \frac{1}{2}. \end{aligned}

So, we get the following heuristic: if x0x \approx 0, then

1cosxx212    1cosxx22.\frac{1 - \cos{x}}{x^2} \approx \frac{1}{2} \implies 1 - \cos{x} \approx \frac{x^2}{2}.

If we plug in x=1nx = \frac{1}{n}, then

1cos(1n)12n2.1 - \cos\p{\frac{1}{n}} \approx \frac{1}{2n^2}.

From here, you can use bn=1n2b_n = \frac{1}{n^2} (or bn=12n2b_n = \frac{1}{2n^2}; both will work) in the limit comparison test. Then

limn1cos(1n)1n2=limn1cos(1n)(1n)2=12.\lim_{n\to\infty} \frac{1 - \cos\p{\frac{1}{n}}}{\frac{1}{n^2}} = \lim_{n\to\infty} \frac{1 - \cos\p{\frac{1}{n}}}{\p{\frac{1}{n}}^2} = \frac{1}{2}.

The pp-test tells us that n=11n2\sum_{n=1}^\infty \frac{1}{n^2} converges, so by limit comparison, n=1(1cos(1n))\sum_{n=1}^\infty \p{1 - \cos\p{\frac{1}{n}}} also converges.

Example 7.

True or false:

If nan\sum_n a_n converges absolutely, then nan2\sum_n a_n^2 converges.

Solution.

This is true. Since nan\sum_n \abs{a_n} converges, we know that

limnan=0.\lim_{n\to\infty} \abs{a_n} = 0.

This means that eventually, an1\abs{a_n} \leq 1. Mathematically, this means there exists N>0N > 0 such that if nNn \geq N, then an1\abs{a_n} \leq 1. So, if nNn \geq N, then

an2=an2=anan1an=an.\begin{aligned} a_n^2 &= \abs{a_n}^2 \\ &= \abs{a_n} \cdot \abs{a_n} \\ &\leq 1 \cdot \abs{a_n} \\ &= \abs{a_n}. \end{aligned}

Since n=Nan\sum_{n=N}^\infty \abs{a_n} converges, direct comparison tells us that n=Nan2\sum_{n=N}^\infty a_n^2 also converges, so

n=1an2=n=1N1an2+n=Nan2,\sum_{n=1}^\infty a_n^2 = \sum_{n=1}^{N-1} a_n^2 + \sum_{n=N}^\infty a_n^2,

i.e., this is the sum of two convergent series, so the entire series converges.