Week 4 Discussion Notes

Table of Contents

Infinite Series

Definition

The infinite sum of a sequence (an)n\p{a_n}_n of numbers is defined to be the limit of the partial sums:

n=1an=limNn=1Nan.\sum_{n=1}^\infty a_n = \lim_{N\to\infty} \sum_{n=1}^N a_n.

For most of this class, we'll be concerned with whether an infinite series converges or diverges, i.e., whether the sequence of partial sums (n=1Nan)N\p{\sum_{n=1}^N a_n}_N has a limit or not. There are a handful of special cases where we can calculate the actual sum, though:

Geometric Series

Here's one formula for the geometric series:

Theorem

If r<1\abs{r} < 1, then n=0rn\sum_{n=0}^\infty r^n exists and

n=0rn=1+r+r2+=11r.\sum_{n=0}^\infty r^n = 1 + r + r^2 + \cdots = \frac{1}{1 - r}.

There are more formulas that are more general, but in my opinion this is the easiest to remember, and if you remember this one, you can apply it to any geometric series:

Example 1.

Calculate n=3523n+232n+3\displaystyle \sum_{n=3}^\infty 5 \cdot \frac{2^{3n+2}}{3^{2n+3}}.

Solution.

To use the formula, we need to rewrite the sum into a form that lets us apply it easily.

Using the basic properties of exponentials, we get

23n+2=(23)n22=8n2232n+3=(32)n33=9n33,\begin{aligned} 2^{3n+2} &= \p{2^3}^n \cdot 2^2 = 8^n \cdot 2^2 \\ 3^{2n+3} &= \p{3^2}^n \cdot 3^3 = 9^n \cdot 3^3, \end{aligned}

so the sum becomes

n=3523n+232n+3=n=358n229n33=52233n=3(89)n=52233[(89)3+(89)4+(89)5+]=52233(89)3[1+89+(89)2+]=52233(2332)31189=522332936119=52113932=521137.\begin{aligned} \sum_{n=3}^\infty 5 \cdot \frac{2^{3n+2}}{3^{2n+3}} &= \sum_{n=3}^\infty 5 \cdot \frac{8^n \cdot 2^2}{9^n \cdot 3^3} \\ &= \frac{5 \cdot 2^2}{3^3} \sum_{n=3}^\infty \p{\frac{8}{9}}^n \\ &= \frac{5 \cdot 2^2}{3^3} \br{\p{\frac{8}{9}}^3 + \p{\frac{8}{9}}^4 + \p{\frac{8}{9}}^5 + \cdots} \\ &= \frac{5 \cdot 2^2}{3^3} \p{\frac{8}{9}}^3 \br{1 + \frac{8}{9} + \p{\frac{8}{9}}^2 + \cdots} \\ &= \frac{5 \cdot 2^2}{3^3} \p{\frac{2^3}{3^2}}^3 \frac{1}{1 - \frac{8}{9}} \\ &= \frac{5 \cdot 2^2}{3^3} \frac{2^9}{3^6} \frac{1}{\frac{1}{9}} \\ &= \frac{5 \cdot 2^{11}}{3^9} \cdot 3^2 \\ &= \boxed{\frac{5 \cdot 2^{11}}{3^7}}. \end{aligned}

Telescoping Series

The other main type of series where you can calculate sums are ones that telescope, meaning sums where all but finitely many terms cancel out.

Example 2.

Calculate n=354n29\displaystyle \sum_{n=3}^\infty \frac{5}{4n^2 - 9}.

Solution.

Notice that

12n312n+3=64n29.\frac{1}{2n - 3} - \frac{1}{2n + 3} = \frac{6}{4n^2 - 9}.

So, we get

n=354n29=n=35664n29=56n=3(12n312n+3).\begin{aligned} \sum_{n=3}^\infty \frac{5}{4n^2 - 9} &= \sum_{n=3}^\infty \frac{5}{6} \cdot \frac{6}{4n^2 - 9} \\ &= \frac{5}{6} \sum_{n=3}^\infty \p{\frac{1}{2n - 3} - \frac{1}{2n + 3}}. \end{aligned}

From here, it's always a good idea to look at the partial sums and write out some terms to figure out what cancels out:

n=3N(12n312n+3)=13+15+17+19+111++12N3(19+111++12N3+12N1+12N+1+12N+3)=13+15+1712N112N+112N+3.\begin{aligned} \sum_{n=3}^N \p{\frac{1}{2n - 3} - \frac{1}{2n + 3}} &= \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cancel{\frac{1}{9}} + \bcancel{\frac{1}{11}} + \cdots + \cancel{\frac{1}{2N - 3}} \\ &\qquad - \p{\cancel{\frac{1}{9}} + \bcancel{\frac{1}{11}} + \cdots + \cancel{\frac{1}{2N - 3}} + \frac{1}{2N - 1} + \frac{1}{2N + 1} + \frac{1}{2N + 3}} \\ &= \frac{1}{3} + \frac{1}{5} + \frac{1}{7} - \frac{1}{2N - 1} - \frac{1}{2N + 1} - \frac{1}{2N + 3}. \end{aligned}

So, because the infinite sum is (defined to be) the limit of the partial sums,

n=354n29=56limNn=3N(12n312n+3)=56limNn=3N(13+15+1712N112N+112N+3)=56(13+15+17).\begin{aligned} \sum_{n=3}^\infty \frac{5}{4n^2 - 9} &= \frac{5}{6} \lim_{N\to\infty} \sum_{n=3}^N \p{\frac{1}{2n - 3} - \frac{1}{2n + 3}} \\ &= \frac{5}{6} \lim_{N\to\infty} \sum_{n=3}^N \p{\frac{1}{3} + \frac{1}{5} + \frac{1}{7} - \frac{1}{2N - 1} - \frac{1}{2N + 1} - \frac{1}{2N + 3}} \\ &= \boxed{\frac{5}{6}\p{\frac{1}{3} + \frac{1}{5} + \frac{1}{7}}}. \end{aligned}
Example 3.

Determine whether n=1ln(n+1n)\displaystyle \sum_{n=1}^\infty \ln\p{\frac{n + 1}{n}} converges or diverges.

Solution.

If you use the properties of logarithms, you get

ln(n+1n)=ln(n+1)lnn.\ln\p{\frac{n+1}{n}} = \ln\p{n+1} - \ln{n}.

So the partial sums look like

n=1Nln(n+1n)=n=1N(ln(n+1)lnn)=ln2+ln3++lnN(ln1+ln2+ln3++lnN+ln(N+1))=ln(N+1)\begin{aligned} \sum_{n=1}^N \ln\p{\frac{n + 1}{n}} &= \sum_{n=1}^N \p{\ln\p{n+1} - \ln{n}} \\ &= \cancel{\ln{2}} + \bcancel{\ln{3}} + \cdots + \cancel{\ln{N}} \\ &\quad - \p{\ln{1} + \cancel{\ln{2}} + \bcancel{\ln{3}} + \cdots + \cancel{\ln{N}} + \ln\p{N+1}} \\ &= \ln\p{N + 1} \end{aligned}

(since ln1=0\ln{1} = 0). So

limNn=1Nln(n+1n)=limNln(N+1)=,\lim_{N\to\infty} \sum_{n=1}^N \ln\p{\frac{n+1}{n}} = \lim_{N\to\infty} \ln\p{N + 1} = \infty,

which means the infinite sum diverges.

Example 4.

Calculate n=1[sin2(π2n)sin2(π2n+2)]\displaystyle \sum_{n=1}^\infty \br{\sin^2\p{\frac{\pi}{2n}} - \sin^2\p{\frac{\pi}{2n + 2}}}.

Solution.

Like before, we just need to look at the partial sums:

n=1N[sin2(π2n)sin2(π2n+2)]=sin2(π2)+sin2(π4)+sin2(π6)++sin2(π2N)[sin2(π4)+sin2(π6)++sin2(π2N)+sin2(π2N+2)]=1sin2(π2N+2).\begin{aligned} \sum_{n=1}^N \br{\sin^2\p{\frac{\pi}{2n}} - \sin^2\p{\frac{\pi}{2n + 2}}} &= \sin^2\p{\frac{\pi}{2}} + \cancel{\sin^2\p{\frac{\pi}{4}}} + \bcancel{\sin^2\p{\frac{\pi}{6}}} + \cdots + \cancel{\sin^2\p{\frac{\pi}{2N}}} \\ &\quad - \br{\cancel{\sin^2\p{\frac{\pi}{4}}} + \bcancel{\sin^2\p{\frac{\pi}{6}}} + \cdots + \cancel{\sin^2\p{\frac{\pi}{2N}}} + \sin^2\p{\frac{\pi}{2N+2}}} \\ &= 1 - \sin^2\p{\frac{\pi}{2N+2}}. \end{aligned}

So, when you take limits, you get

limNn=1N[sin2(π2n)sin2(π2n+2)]=limN(1sin2(π2N+2))=1.\lim_{N\to\infty} \sum_{n=1}^N \br{\sin^2\p{\frac{\pi}{2n}} - \sin^2\p{\frac{\pi}{2n + 2}}} = \lim_{N\to\infty} \p{1 - \sin^2\p{\frac{\pi}{2N+2}}} = \boxed{1}.

Other Problems

Example 5.

For this example, we're going to use the fact that

limθ0sinθθ=1.\lim_{\theta\to0} \frac{\sin\theta}{\theta} = 1.

For this limit, what matters is that what's inside the sine and in the denominator are the same, and that they both go to 00. So for example,

limx0sin2xx1\lim_{x\to0} \frac{\sin{2x}}{x} \neq 1

since 2x2x and xx are not the same. Instead, if you multiply and divide by 22, you get

limx0sin2xx=limx02sin2x2x=2.\lim_{x\to0} \frac{\sin{2x}}{x} = \lim_{x\to0} 2 \cdot \frac{\sin{2x}}{2x} = 2.

With this in mind, without using L'Hôpital's rule, calculate the limit

limx1sin(x24x+3)x1.\lim_{x\to1} \frac{\sin\p{x^2 - 4x + 3}}{x - 1}.
Solution.

We can factor x24x+3=(x1)(x3)x^2 - 4x + 3 = \p{x - 1}\p{x - 3}, so we end up with

limx1sin(x24x+3)x1=limx1sin((x1)(x3))x1.\lim_{x\to1} \frac{\sin\p{x^2 - 4x + 3}}{x - 1} = \lim_{x\to1} \frac{\sin\p{\p{x - 1}\p{x - 3}}}{x - 1}.

Finally, we just need to make sure what's inside the sine and what's in the denominator are the same, so we can multiply and divide by x3x - 3 to get

limx1sin((x1)(x3))(x1)(x3)(x3)=2.\lim_{x\to1} \frac{\sin\p{\p{x - 1}\p{x - 3}}}{\p{x - 1}\p{x - 3}} \cdot \p{x - 3} = \boxed{-2}.
Example 6.

Calculate tan2xdx\displaystyle \int \tan^2{x} \,\diff{x}.

Solution.

If you use the identity tan2x+1=sec2x\tan^2{x} + 1 = \sec^2{x}, then this becomes

tan2xdx=sec2x1dx=tanxx+C.\int \tan^2{x} \,\diff{x} = \int \sec^2{x} - 1 \,\diff{x} = \boxed{\tan{x} - x + C}.