Useful Formulas

Table of Contents

Trigonometry

Identities

Pythagorean Identities

cos2θ+sin2θ=1tan2θ+1=sec2θcot2θ+1=csc2θ\begin{gathered} \cos^2{\theta} + \sin^2{\theta} = 1 \\ \tan^2{\theta} + 1 = \sec^2{\theta} \\ \cot^2{\theta} + 1 = \csc^2{\theta} \end{gathered}

Angle-Sum Identities

sin(α+β)=sinαcosβ+sinβcosαcos(α+β)=cosαcosβsinαsinβ\begin{aligned} \sin\p{\alpha + \beta} &= \sin{\alpha}\cos{\beta} + \sin{\beta}\cos{\alpha} \\ \cos\p{\alpha + \beta} &= \cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta} \end{aligned}

From these, you can derive the double-angle identities by plugging in α=β=θ\alpha = \beta = \theta:

sin2θ=2sinθcosθcos2θ=cos2θsin2θ=2cos2θ1=12sin2θ.\begin{aligned} \sin{2\theta} &= 2\sin{\theta}\cos{\theta} \\ \cos{2\theta} &= \cos^2{\theta} - \sin^2{\theta} \\ &= 2\cos^2{\theta} - 1 \\ &= 1 - 2\sin^2{\theta}. \end{aligned}

If you solve for cos2θ\cos^2{\theta} and sin2θ\sin^2{\theta}, respectively, you get

cos2θ=1+cos2θ2sin2θ=1cos2θ2.\begin{aligned} \cos^2{\theta} &= \frac{1 + \cos{2\theta}}{2} \\ \sin^2{\theta} &= \frac{1 - \cos{2\theta}}{2}. \end{aligned}

You can also derive the sum-to-product identities from these, but I'm not sure if you'll need them.

Integrals

Note that a lot of the following derivatives and integrals look really similar. You really only need to remember the ones for sinx\sin{x}, tanx\tan{x}, and secx\sec{x}, and the ones for cosx\cos{x}, cotx\cot{x}, and cscx\csc{x} will look almost exactly the same, except you have a minus sign in front.

tanxdx=lnsecx+Ccotxdx=lncscx+Csecxdx=lnsecx+tanx+Ccscxdx=lncscx+cotx+C\begin{aligned} \int \tan{x} \,\diff{x} &= \phantom{-}\ln{\abs{\sec{x}}} + C \\ \int \cot{x} \,\diff{x} &= -\ln{\abs{\csc{x}}} + C \\ \int \sec{x} \,\diff{x} &= \phantom{-}\ln{\abs{\sec{x} + \tan{x}}} + C \\ \int \csc{x} \,\diff{x} &= -\ln{\abs{\csc{x} + \cot{x}}} + C \end{aligned}

Inverse Functions

Derivatives

ddxarcsinx=11x2ddxarctanx=11+x2ddxarcsecx=1xx21ddxarccosx=11x2ddxarccotx=11+x2ddxarccscx=1xx21\begin{aligned} \deriv{}{x} \arcsin{x} &= \phantom{-}\frac{1}{\sqrt{1 - x^2}} \\ \deriv{}{x} \arctan{x} &= \phantom{-}\frac{1}{1 + x^2} \\ \deriv{}{x} \arcsec{x} &= \phantom{-}\frac{1}{\abs{x}\sqrt{x^2 - 1}} \\ \deriv{}{x} \arccos{x} &= -\frac{1}{\sqrt{1 - x^2}} \\ \deriv{}{x} \arccot{x} &= -\frac{1}{1 + x^2} \\ \deriv{}{x} \arccsc{x} &= -\frac{1}{\abs{x}\sqrt{x^2 - 1}} \\ \end{aligned}

Integrals

Any time you have a formula for a derivative, you automatically get a formula for an integral by going backwards:

11x2dx=arcsinx+C11+x2dx=arctanx+C1xx21dx=arcsecx+C\begin{aligned} \int \frac{1}{\sqrt{1 - x^2}} \,\diff{x} &= \arcsin{x} + C \\ \int \frac{1}{1 + x^2} \,\diff{x} &= \arctan{x} + C \\ \int \frac{1}{\abs{x}\sqrt{x^2 - 1}} \,\diff{x} &= \arcsec{x} + C \end{aligned}

Series

Convergence Tests

Theorem (divergence test)

Let {an}\set{a_n} be a sequence. If limnan\displaystyle \lim_{n\to\infty} a_n does not exist or if it exists and is not 00, then n=0an\displaystyle \sum_{n=0}^\infty a_n diverges.

Theorem (direct comparison test)

Suppose 0anbn0 \leq a_n \leq b_n for nMn \geq M for some M>0M > 0. Then:

  • If n=0an\displaystyle \sum_{n=0}^\infty a_n diverges, then n=0bn\displaystyle \sum_{n=0}^\infty b_n diverges as well.
  • If n=0bn\displaystyle \sum_{n=0}^\infty b_n converges, then n=0an\displaystyle \sum_{n=0}^\infty a_n converges as well.
Theorem (limit comparison test)
Theorem (ratio test)

Let L=limnan+1an\displaystyle L = \lim_{n\to\infty} \abs{\frac{a_{n+1}}{a_n}}.

  • If L<1L < 1, then n=1an\displaystyle \sum_{n=1}^\infty a_n converges absolutely.
  • If L>1L > 1, then n=1an\displaystyle \sum_{n=1}^\infty a_n diverges.
  • If L=1L = 1, then the ratio test is inconclusive.
Theorem (root test)

Let L=limnan1/n\displaystyle L = \lim_{n\to\infty} \abs{a_n}^{1/n}.

  • If L<1L < 1, then n=1an\displaystyle \sum_{n=1}^\infty a_n converges absolutely.
  • If L>1L > 1, then n=1an\displaystyle \sum_{n=1}^\infty a_n diverges.
  • If L=1L = 1, then the root test is inconclusive.
Theorem (alternating series test)

Let {an}\set{a_n} be a sequence of the form an=(1)nbna_n = \p{-1}^n b_n, where bn0b_n \geq 0, is decreasing, and limnbn=0\displaystyle\lim_{n\to\infty} b_n = 0. Then n=0an\displaystyle \sum_{n=0}^\infty a_n converges.

Common Power Series Expansions

f(x)=T(x)11x=n=0xn=1+x+x2+x3+for x(1,1)ex=n=0xnn!=1+x+x22!+x33!+for xRsinx=n=0(1)nx2n+1(2n+1)!=xx33!+x55!x77!+for xRcosx=n=0(1)nx2n(2n)!=1x22!+x44!x66!+for xR\begin{array}{rcllll} \hline \\[-2ex] f\p{x} & = & T\p{x} \\[1ex] \hline \\[-2ex] \displaystyle\frac{1}{1 - x} & = & \displaystyle\sum_{n=0}^\infty x^n & = & \displaystyle 1 + x + x^2 + x^3 + \cdots & \text{for } x \in \p{-1, 1} \\[3ex] e^x & = & \displaystyle\sum_{n=0}^\infty \frac{x^n}{n!} & = & \displaystyle 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots & \text{for } x \in \R \\[3ex] \sin{x} & = & \displaystyle\sum_{n=0}^\infty \p{-1}^n\frac{x^{2n+1}}{\p{2n+1}!} & = & \displaystyle x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots & \text{for } x \in \R \\[3ex] \cos{x} & = & \displaystyle\sum_{n=0}^\infty \p{-1}^n\frac{x^{2n}}{\p{2n}!} & = & \displaystyle 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots & \text{for } x \in \R \\[3ex]\hline \end{array}

Finding Power Series Expansions

Usually, you will want to start from one of the common power series expansions above and use the following operations to get new ones:

  1. Multiplying by CxkCx^k
  2. Plugging in CxkCx^k
  3. Differentiating
  4. Integrating

Important: If you differentiate or integrate a power series, the endpoints of the interval of convergence stays the same, but you have to check whether the new series converges or diverges at the endpoints.

Taylor Polynomials

The nn-th degree Taylor polynomial of a function f(x)f\p{x} centered at aa is

Tnf(x)=k=0nf(k)(a)k!(xa)k.T_nf\p{x} = \sum_{k=0}^n \frac{f^{\p{k}\p{a}}}{k!} \p{x - a}^k.

Error Bound

Theorem (error bound)

Let f(x)f\p{x} be differentiable (at least) n+1n+1 times, and let Tnf(x)T_nf\p{x} be the nn-th degree Taylor polynomial of ff centered at aa. Then

Tnf(x)f(x)K(n+1)!xan+1,\abs{T_nf\p{x} - f\p{x}} \leq \frac{K}{\p{n+1}!} \abs{x - a}^{n+1},

where KK is an upper bound for f(n+1)\abs{f^{\p{n+1}}} between xx and aa, i.e., on the interval [a,x]\br{a, x} or [x,a]\br{x, a}, depending on whether axa \leq x or xax \leq a.