Week 0 Discussion Notes
Since this discussion was before the first lecture, we just reviewed some trigonometry and integration.
Example 1.
Calculate ∫sec3xtanxdx.
Solution.
We will solve this in two different ways.
Method 1: u=secx⟹du=secxtanxdx.
∫sec3xtanxdx=∫(sec2x)(secxtanx)dx=∫u2du=31u3+C=31sec3x+C
Method 2: u=cosx⟹du=−sinxdx.
∫sec3xtanxdx=∫cos4xsinxdx=−∫u4du=−(−31u−3)+C=31cos3x1+C=31sec3x+C
Example 2.
Calculate ∫sec4xdx.
Solution.
Recall the identity tan2x+1=sec2x. This gives
∫sec4xdx=∫(tan2x+1)sec2xdx.
Let u=tanx⟹du=sec2xdx. Then
∫sec4xdx=∫(tan2x+1)sec2xdx=∫(u2+1)du=31u3+u+C=31tan3x+tanx+C.
Example 3.
Calculate ∫tan2xdx.
Solution.
Using the same identity as in Example 2, we get
∫tan2xdx=∫sec2x−1dx=tanx−x+C.