Week 0 Discussion Notes

Since this discussion was before the first lecture, we just reviewed some trigonometry and integration.

Example 1.

Calculate sec3xtanxdx\displaystyle \int \sec^3 x \tan x \,\diff{x}.

Solution.

We will solve this in two different ways.

Method 1: u=secx    du=secxtanxdxu = \sec x \implies \diff{u} = \sec x \tan x \,\diff{x}.

sec3xtanxdx=(sec2x)(secxtanx)dx=u2du=13u3+C=13sec3x+C\begin{aligned} \int \sec^3 x \tan x \,\diff{x} &= \int \p{\sec^2 x} \p{\sec x \tan x} \,\diff{x} \\ &= \int u^2 \,\diff{u} \\ &= \frac{1}{3} u^3 + C \\ &= \boxed{\frac{1}{3} \sec^3 x + C} \end{aligned}

Method 2: u=cosx    du=sinxdxu = \cos x \implies \diff{u} = -\sin x \,\diff{x}.

sec3xtanxdx=sinxcos4xdx=duu4=(13u3)+C=131cos3x+C=13sec3x+C\begin{aligned} \int \sec^3 x \tan x \,\diff{x} &= \int \frac{\sin x}{\cos^4 x} \,\diff{x} \\ &= -\int \frac{\diff{u}}{u^4} \\ &= -\p{-\frac{1}{3}u^{-3}} + C \\ &= \frac{1}{3} \frac{1}{\cos^3 x} + C \\ &= \boxed{\frac{1}{3} \sec^3 x + C} \end{aligned}
Example 2.

Calculate sec4xdx\displaystyle \int \sec^4 x \,\diff{x}.

Solution.

Recall the identity tan2x+1=sec2x\tan^2 x + 1 = \sec^2 x. This gives

sec4xdx=(tan2x+1)sec2xdx.\int \sec^4 x \,\diff{x} = \int \p{\tan^2 x + 1} \sec^2 x \,\diff{x}.

Let u=tanx    du=sec2xdxu = \tan x \implies \diff{u} = \sec^2 x \,\diff{x}. Then

sec4xdx=(tan2x+1)sec2xdx=(u2+1)du=13u3+u+C=13tan3x+tanx+C.\begin{aligned} \int \sec^4 x \,\diff{x} &= \int \p{\tan^2 x + 1} \sec^2 x \,\diff{x} \\ &= \int \p{u^2 + 1} \,\diff{u} \\ &= \frac{1}{3} u^3 + u + C \\ &= \boxed{\frac{1}{3} \tan^3 x + \tan x + C}. \end{aligned}
Example 3.

Calculate tan2xdx\displaystyle \int \tan^2 x \,\diff{x}.

Solution.

Using the same identity as in Example 2, we get

tan2xdx=sec2x1dx=tanxx+C.\int \tan^2 x \,\diff{x} = \int \sec^2 x - 1 \,\diff{x} = \boxed{\tan x - x + C}.