Midterm 2 Solutions

Table of Contents

Question 1

True or false:

  1. The convergent sequences {an}\set{a_n} and {bn}\set{b_n} differ in their first 100100 terms, but an=bna_n = b_n for n>100n > 100. It follows that limnan=limnbn\displaystyle \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n.
  2. If the sequence {an}\set{a_n} converges, then the sequence {(1)nan}\set{\p{-1}^n a_n} converges.
Solution.
(1) is true and (2) is false.
  1. If two convergent sequences differ for only finitely many terms, then they have the same limit.
  2. If an=1a_n = 1, then ana_n converges to 11, but (1)nan=(1)n\p{-1}^na_n = \p{-1}^n diverges.

Question 2

  1. If an infinite series converges conditionally, then the value of the series depends on the order of the summation. Give one example of such an infinite series and explain.
  2. Give an example of an antiderivative that can be found using a trigonometric reduction formula.
Solution.
  1. n=1(1)nn\displaystyle \sum_{n=1}^\infty \frac{\p{-1}^n}{n} converges by the alternating series test, but n=11n\displaystyle \sum_{n=1}^\infty \frac{1}{n} diverges because of the pp-series theorem.
  2. A reduction formula can be used for integrals involving powers of sinx\sin{x} and cosx\cos{x}, e.g., sin2xcos4xdx\displaystyle \int \sin^2{x}\cos^{4}{x} \,\diff{x}.

Question 3

Evaluate the integrals using the specified technique.

  1. x2+16x4dx\displaystyle \int \frac{\sqrt{x^2 + 16}}{x^4} \,\diff{x} (trig substitution)
  2. excosxdx\displaystyle \int e^x\cos{x} \,\diff{x} (integration by parts)
Solution.
  1. Set x=4tanθ    dx=4sec2θdθx = 4\tan\theta \implies \diff{x} = 4\sec^2\theta \,\diff\theta. Then

    x2+16x4dx=4secθ256tan4θ4sec2θdθ=116sec3θtan4θdθ=1161cos3θcos4θsin4θdθ=116cosθsin4θdθ.\begin{aligned} \int \frac{\sqrt{x^2 + 16}}{x^4} \,\diff{x} &= \int \frac{4\sec\theta}{256\tan^4\theta} \cdot 4\sec^2\theta \,\diff\theta \\ &= \frac{1}{16} \int \frac{\sec^3\theta}{\tan^4\theta} \,\diff\theta \\ &= \frac{1}{16} \int \frac{1}{\cos^3\theta} \cdot \frac{\cos^4\theta}{\sin^4\theta} \,\diff\theta \\ &= \frac{1}{16} \int \frac{\cos\theta}{\sin^4\theta} \,\diff\theta. \end{aligned}

    If we set v=sinθv = \sin\theta, then dv=cosθdθ\diff{v} = \cos\theta \,\diff\theta and we get

    116cosθsin4θdθ=116dvv4=1481v3=1481sin3θ+C.\begin{aligned} \frac{1}{16} \int \frac{\cos\theta}{\sin^4\theta} \,\diff\theta &= \frac{1}{16} \int \frac{\diff{v}}{v^4} \\ &= -\frac{1}{48} \frac{1}{v^3} \\ &= -\frac{1}{48} \frac{1}{\sin^3\theta} + C. \end{aligned}

    To undo the substitution,

    x2+16=16tan2θ+16=16sec2θcos2θ=16x2+161sin2θ=16x2+16sin2θ=x2x2+16sin3θ=(x2x2+16)3/2=x3(x2+16)3/2.\begin{aligned} x^2 + 16 &= 16\tan^2\theta + 16 \\ &= 16\sec^2\theta \\ \cos^2\theta &= \frac{16}{x^2 + 16} \\ 1 - \sin^2\theta &= \frac{16}{x^2 + 16} \\ \sin^2\theta &= \frac{x^2}{x^2 + 16} \\ \sin^3\theta &= \p{\frac{x^2}{x^2 + 16}}^{3/2} \\ &= \frac{x^3}{\p{x^2 + 16}^{3/2}}. \end{aligned}

    So in the end, we get

    (x2+16)3/248x3+C.\boxed{-\frac{\p{x^2 + 16}^{3/2}}{48x^3} + C}.
  2. Integrate by parts with u=exu = e^x and dv=cosxdx\diff{v} = \cos{x} \,\diff{x}, which gives

    du=exdxandv=sinx.\diff{u} = e^x \,\diff{x} \quad\text{and}\quad v = \sin{x}.

    So, the integral becomes

    excosxdx=exsinxexsinxdx.\int e^x\cos{x} \,\diff{x} = e^x\sin{x} - \int e^x\sin{x} \,\diff{x}.

    Integrate by parts again with u=exu = e^x and dv=sinxdx\diff{v} = \sin{x} \,\diff{x}, so

    du=exdxandv=cosx,\diff{u} = e^x \,\diff{x} \quad\text{and}\quad v = -\cos{x},

    which turns the integral into

    excosxdx=exsinx(excosx+excosxdx)=exsinx+excosxexcosxdx    2excosxdx=exsinx+excosx+C\begin{aligned} \int e^x\cos{x} \,\diff{x} &= e^x\sin{x} - \p{-e^x\cos{x} + \int e^x\cos{x} \,\diff{x}} \\ &= e^x\sin{x} + e^x\cos{x} - \int e^x\cos{x} \,\diff{x} \\ \implies 2\int e^x\cos{x} \,\diff{x} &= e^x\sin{x} + e^x\cos{x} + C \end{aligned}

    by solving for the integral. Dividing by 22 and absorbing constants into CC, we get

    excosxdx=ex2(sinx+cosx)+C.\int e^x\cos{x} \,\diff{x} = \boxed{\frac{e^x}{2}\p{\sin{x} + \cos{x}} + C}.

Question 4

Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

  1. 1xx3+1dx\displaystyle \int_1^\infty \frac{x}{x^3 + 1} \,\diff{x}
  2. 01dx1x2\displaystyle \int_0^1 \frac{\diff{x}}{\sqrt{1 - x^2}}
Solution.
  1. We can factor sums of cubes, so x3+1=(x+1)(x2x+1)x^3 + 1 = \p{x + 1}\p{x^2 - x + 1}. We can then do partial fractions:

    x(x+1)(x2x+1)=Ax+1+Bx+Cx2x+1    x=A(x2x+1)+(Bx+C)(x+1)    0=Ax2Ax+A+Bx2+Bx+Cx+Cx    0=(A+B)x2+(A+B+C1)x+A+C\begin{aligned} \frac{x}{\p{x + 1}\p{x^2 - x + 1}} &= \frac{A}{x + 1} + \frac{Bx + C}{x^2 - x + 1} \\ \implies x &= A\p{x^2 - x + 1} + \p{Bx + C}\p{x + 1} \\ \implies 0 &= Ax^2 - Ax + A + Bx^2 + Bx + Cx + C - x \\ \implies 0 &= \p{A + B}x^2 + \p{-A + B + C - 1}x + A + C \end{aligned}

    For the right-hand side to be 00 for every xx, all the coefficients need to be 00. So, we get the system

    {A+B=0A+B+C1=0A+C=0.\begin{cases} A + B &= 0 \\ -A + B + C - 1 &= 0 \\ A + C &= 0. \end{cases}

    If we subtract the first equation from the second equation, we get 2A+C1=0-2A + C - 1 = 0, so if we combine that with the third equation,

    3C1=0    C=13.3C - 1 = 0 \implies C = \frac{1}{3}.

    Then

    A+C=0    A=13andA+B=0    B=13,A + C = 0 \implies A = -\frac{1}{3} \quad\text{and}\quad A + B = 0 \implies B = \frac{1}{3},

    so the decomposition is

    xx3+1=13(1x+1+x+1x2x+1).\frac{x}{x^3 + 1} = \frac{1}{3} \p{-\frac{1}{x + 1} + \frac{x + 1}{x^2 - x + 1}}.

    The integral of the first term in the parentheses is just lnx+1+C-\ln\abs{x + 1} + C, so we need to worry about the second term. We want to use the substitution u=x2x+1    du=2x1dxu = x^2 - x + 1 \implies \diff{u} = 2x - 1 \,\diff{x}, so we need to separate the second term based on that:

    x+1x2x+122=122x+2x2x+1=122x1+3x2x+1=122x1x2x+1+321x2x+1.\begin{aligned} \frac{x + 1}{x^2 - x + 1} \cdot \frac{2}{2} = \frac{1}{2} \frac{2x + 2}{x^2 - x + 1} &= \frac{1}{2} \frac{2x - 1 + 3}{x^2 - x + 1} \\ &= \frac{1}{2} \frac{2x - 1}{x^2 - x + 1} + \frac{3}{2} \frac{1}{x^2 - x + 1}. \end{aligned}

    Using the uu-substitution, the integral of the first term here is 12lnx2x+1+C\frac{1}{2}\ln\abs{x^2 - x + 1} + C. So, we just need to work on the last term. If we complete the square, x2x+1=(x12)2+34x^2 - x + 1 = \p{x - \frac{1}{2}}^2 + \frac{3}{4}, so the substitution x12=32tanθx - \frac{1}{2} = \frac{\sqrt{3}}{2}\tan\theta works:

    32dxx2x+1=32dx(x12)2+34=3232sec2θ34sec2θdθ=3dθ=3θ+C=3arctan(x1232)+C=3arctan(2x13)+C.\begin{aligned} \frac{3}{2} \int \frac{\diff{x}}{x^2 - x + 1} &= \frac{3}{2} \int \frac{\diff{x}}{\p{x - \frac{1}{2}}^2 + \frac{3}{4}} \\ &= \frac{3}{2} \int \frac{\frac{\sqrt{3}}{2}\sec^2\theta}{\frac{3}{4}\sec^2\theta} \,\diff\theta \\ &= \sqrt{3} \int \,\diff\theta \\ &= \sqrt{3} \theta + C \\ &= \sqrt{3} \arctan\p{\frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}}} + C \\ &= \sqrt{3} \arctan\p{\frac{2x - 1}{\sqrt{3}}} + C. \end{aligned}

    Putting everything together,

    xx3+1dx=13(lnx+1+12lnx2x+1+3arctan(2x13))+C.\int \frac{x}{x^3 + 1} \,\diff{x} = \frac{1}{3}\p{-\ln\abs{x + 1} + \frac{1}{2}\ln\abs{x^2 - x + 1} + \sqrt{3} \arctan\p{\frac{2x - 1}{\sqrt{3}}}} + C.

    To finish the problem, we need to evaluate the integral at the bounds. The lower bound is given at x=1x = 1:

    13(ln2+3arctan(13))=ln23+33π6=π36ln218.\frac{1}{3}\p{-\ln{2} + \sqrt{3}\arctan\p{\frac{1}{\sqrt{3}}}} = -\frac{\ln{2}}{3} + \frac{\sqrt{3}}{3} \frac{\pi}{6} = \frac{\pi\sqrt{3} - 6\ln{2}}{18}.

    For the upper bound, we need to take a limit:

    limR13(lnR+1+12lnR2R+1+3arctan(2R13))=limR13(lnR2R+1R+1+3arctan(2R13))=13(ln1+3π2)=π36.\begin{aligned} &\lim_{R\to\infty} \frac{1}{3}\p{-\ln\abs{R + 1} + \frac{1}{2}\ln\abs{R^2 - R + 1} + \sqrt{3} \arctan\p{\frac{2R - 1}{\sqrt{3}}}} \\ ={}& \lim_{R\to\infty} \frac{1}{3}\p{\ln\abs{\frac{\sqrt{R^2 - R + 1}}{R + 1}} + \sqrt{3} \arctan\p{\frac{2R - 1}{\sqrt{3}}}} \\ ={}& \frac{1}{3}\p{\ln{1} + \sqrt{3} \frac{\pi}{2}} \\ ={}& \frac{\pi\sqrt{3}}{6}. \end{aligned}

    So the final answer is

    1xx3+1dx=π36π36ln218=π3+3ln29.\int_1^\infty \frac{x}{x^3 + 1} \,\diff{x} = \frac{\pi\sqrt{3}}{6} - \frac{\pi\sqrt{3} - 6\ln{2}}{18} = \boxed{\frac{\pi\sqrt{3} + 3\ln{2}}{9}}.
  2. We can integrate directly:

    01dx1x2=limt10tdx1x2=limt1arcsinx0t=limt1arcsint=arcsin1=π2.\begin{aligned} \int_0^1 \frac{\diff{x}}{\sqrt{1 - x^2}} = \lim_{t\to1^-} \int_0^t \frac{\diff{x}}{\sqrt{1 - x^2}} &= \lim_{t\to1^-} \Bigl. \arcsin{x} \Bigr\rvert_0^t \\ &= \lim_{t\to1^-} \arcsin{t} \\ &= \arcsin{1} \\ &= \boxed{\frac{\pi}{2}}. \end{aligned}

Question 5

Assume the function ff has an inverse on its domain.

  1. Let y=f1(x)y = f^{-1}\p{x} and show that f1(x)dx=yf(y)dy\displaystyle \int f^{-1}\p{x} \,\diff{x} = \int yf'\p{y} \,\diff{y}.
  2. Use (i) to prove that f1(x)dx=yf(y)f(y)dy\displaystyle \int f^{-1}\p{x} \,\diff{x} = yf\p{y} - \int f\p{y} \,\diff{y}.
  3. Use (ii) to evaluate lnxdx\displaystyle \int \ln{x} \,\diff{x}.
Solution.
  1. If y=f1(x)y = f^{-1}\p{x}, then x=f(y)    dx=f(y)dyx = f\p{y} \implies \diff{x} = f'\p{y} \,\diff{y}, so

    f1(x)dx=yf(y)dy.\int f^{-1}\p{x} \,\diff{x} = \int yf'\p{y} \,\diff{y}.
  2. We can integrate by parts with u=yu = y and dv=f(y)dy\diff{v} = f'\p{y} \,\diff{y}, which gives

    du=dyandv=f(y),\diff{u} = \diff{y} \quad\text{and}\quad v = f\p{y},

    so we get

    f1(x)dx=yf(y)f(y)dy.\int f^{-1}\p{x} \,\diff{x} = yf\p{y} - \int f\p{y} \,\diff{y}.
  3. If y=f1(x)=lnxy = f^{-1}\p{x} = \ln{x}, then f(y)=eyf\p{y} = e^y, so

    lnxdx=yf(y)f(y)dy=lnxelnxeydy=xlnxey+C=xlnxelnx+C=xlnxx+C.\begin{aligned} \int \ln{x} \,\diff{x} &= yf\p{y} - \int f\p{y} \,\diff{y} \\ &= \ln{x} \cdot e^{\ln{x}} - \int e^y \,\diff{y} \\ &= x\ln{x} - e^y + C \\ &= x\ln{x} - e^{\ln{x}} + C \\ &= \boxed{x\ln{x} - x + C}. \end{aligned}

Question 6

Determine whether the series is convergent or divergent. If it is convergent, find its sum (if possible).

  1. n=13n+14n\displaystyle \sum_{n=1}^\infty 3^{n+1} 4^{-n}
  2. n=21n(lnn)2\displaystyle \sum_{n=2}^\infty \frac{1}{n\p{\ln{n}}^2}
Solution.
  1. This is a geometric series:

    n=13n+14n=n=133n4n=3n=1(34)n=334134=9.\sum_{n=1}^\infty 3^{n+1} 4^{-n} = \sum_{n=1}^\infty 3 \cdot \frac{3^n}{4^n} = 3 \sum_{n=1}^\infty \p{\frac{3}{4}}^n = 3 \cdot \frac{\frac{3}{4}}{1 - \frac{3}{4}} = \boxed{9}.
  2. If f(x)=1x(lnx)2f\p{x} = \frac{1}{x\p{\ln{x}}^2}, then if x>e2x > e^2,

    f(x)=(lnx)22xlnxx(x(lnx)2)2=(lnx2)lnx(x(lnx)2)2<0,f'\p{x} = -\frac{\p{\ln{x}}^2 - \frac{2x\ln{x}}{x}}{\p{x\p{\ln{x}}^2}^2} = -\frac{\p{\ln{x} - 2}\ln{x}}{\p{x\p{\ln{x}}^2}^2} < 0,

    so ff is continuous, non-negative, and decreasing on x>e2x > e^2. So, we can apply the integral test: let u=lnx    du=dxxu = \ln{x} \implies \diff{u} = \frac{\diff{x}}{x}, and we get

    2dxx(lnx)2=ln2duu2.\int_2^\infty \frac{\diff{x}}{x\p{\ln{x}}^2} = \int_{\ln{2}}^\infty \frac{\diff{u}}{u^2}.

    Since ln2>0\ln{2} > 0, this converges because this is a pp-integral with p>1p > 1, so by the integral test, n=21n(lnn)2\displaystyle \sum_{n=2}^\infty \frac{1}{n\p{\ln{n}}^2} converges, but we can't calculate its sum.

Question 7

Find the sum of the series, if it converges.

  1. n=31(n2)(n1)\displaystyle \sum_{n=3}^\infty \frac{1}{\p{n-2}\p{n-1}}
  2. n=1ln(n+1n)\displaystyle \sum_{n=1}^\infty \ln\p{\frac{n+1}{n}}
Solution.
  1. By partial fractions,

    1(n2)(n1)=1n21n1,\frac{1}{\p{n-2}\p{n-1}} = \frac{1}{n - 2} - \frac{1}{n - 1},

    so we have a telescoping series:

    n=3N(1n21n1)=n=3N1n2n=3N1n1=(11+12+13++1N2)(12+13++1N2+1N1)=11N1.\begin{aligned} \sum_{n=3}^N \p{\frac{1}{n - 2} - \frac{1}{n - 1}} &= \sum_{n=3}^N \frac{1}{n - 2} - \sum_{n=3}^N \frac{1}{n - 1} \\ &= \p{\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{N - 2}} \\ &\qquad - \p{\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{N - 2} + \frac{1}{N - 1}} \\ &= 1 - \frac{1}{N - 1}. \end{aligned}

    So,

    n=31(n2)(n1)=limNn=3N1(n2)(n1)=limN(11N1)=1.\begin{aligned} \sum_{n=3}^\infty \frac{1}{\p{n-2}\p{n-1}} &= \lim_{N\to\infty} \sum_{n=3}^N \frac{1}{\p{n-2}\p{n-1}} \\ &= \lim_{N\to\infty} \p{1 - \frac{1}{N - 1}} \\ &= \boxed{1}. \end{aligned}
  2. This series diverges. Here are two ways to prove this:

    n=1Nln(n+1n)=n=1N(ln(n+1)lnn)=ln(N+1),\sum_{n=1}^N \ln\p{\frac{n+1}{n}} = \sum_{n=1}^N \p{\ln\p{n+1} - \ln{n}} = \ln\p{N+1},

    which diverges as NN \to \infty. Alternatively, you can use the limit test with 1n\frac{1}{n}:

    limnln(n+1n)1n=limnln(1+1n)n=ln(limn(1+1n)n)=lne=1>0.\begin{aligned} \lim_{n\to\infty} \frac{\ln\p{\frac{n+1}{n}}}{\frac{1}{n}} &= \lim_{n\to\infty} \ln\p{1 + \frac{1}{n}}^n \\ &= \ln\p{\lim_{n\to\infty} \p{1 + \frac{1}{n}}^n} \\ &= \ln{e} \\ &= 1 > 0. \end{aligned}

    By the limit test, because n=11n\displaystyle \sum_{n=1}^\infty \frac{1}{n} diverges, so does n=1ln(n+1n)\displaystyle \sum_{n=1}^\infty \ln\p{\frac{n+1}{n}}.