Spring 2021 - Problem 3

density argument, Lp spaces

Let fL2(R)f \in L^2\p{\R}. For n1n \geq 1 we define

fn(x)=02πf(x+t)cos(nt)dt.f_n\p{x} = \int_0^{2\pi} f\p{x + t} \cos\p{nt} \,\diff{t}.

Prove that fnf_n converges to zero both almost everywhere in R\R and in the L2(R)L^2\p{\R} topology, as nn \to \infty.

Solution.
  1. Notice that if gL2(R)g \in L^2\p{\R}, then by Cauchy-Schwarz,

    fn(x)02π(f(x+t)g(x+t))cos(nt)dt+02πg(x+t)cos(nt)dtfn(x)2πfgL2+02πg(x+t)cos(nt)dt.\begin{gathered} f_n\p{x} \leq \int_0^{2\pi} \p{f\p{x + t} - g\p{x + t}} \cos\p{nt} \,\diff{t} + \int_0^{2\pi} g\p{x + t} \cos\p{nt} \,\diff{t} \\ \abs{f_n\p{x}} \leq 2\pi\norm{f - g}_{L^2} + \abs{\int_0^{2\pi} g\p{x + t} \cos\p{nt} \,\diff{t}}. \end{gathered}

    Hence, it suffices to show this on a dense subclass of L2(R)L^2\p{\R}, so without loss of generality, we may assume that ff is a step function. Moreover, by linearity of the problem, we may assume without loss of generality that f=χ[a,b]f = \chi_{\br{a,b}} for some 0a<b2π0 \leq a < b \leq 2\pi. Then by direct calculation,

    abcos(nt)dt=sin(nb)sin(na)nn0,\int_a^b \cos\p{nt} \,\diff{t} = \frac{\sin\p{nb} - \sin\p{na}}{n} \xrightarrow{n\to\infty} 0,

    so ff converges to 00 everywhere. For the second claim, observe first that

    fnL22=Rfn(x)2dx2πR02πf(x+t)2dtdx(Cauchy-Schwarz)=2π02πRf(x+t)2dxdt(Fubini-Tonelli)=4π2fL22,()\begin{aligned} \norm{f_n}_{L^2}^2 &= \int_\R \abs{f_n\p{x}}^2 \,\diff{x} \\ &\leq 2\pi \int_\R \int_0^{2\pi} \abs{f\p{x + t}}^2 \,\diff{t} \,\diff{x} && \p{\text{Cauchy-Schwarz}} \\ &= 2\pi \int_0^{2\pi} \int_\R \abs{f\p{x + t}}^2 \,\diff{x} \,\diff{t} && \p{\text{Fubini-Tonelli}} \\ &= 4\pi^2 \norm{f}_{L^2}^2, &&& \p{*} \end{aligned}

    which is essentially an uniform integrability condition. Observe that (*) holds for any fL2(R)f \in L^2\p{\R}. Let ε>0\epsilon > 0, and let R>0R > 0 be so large so that fχB(0,R)cL2<ε\norm{f\chi_{B\p{0,R}^\comp}}_{L^2} < \epsilon. By absolute continuity, there exists δ>0\delta > 0 such that if m(E)<δm\p{E} < \delta, then fχEL2<ε\norm{f\chi_E}_{L^2} < \epsilon. Since fn0f_n \to 0 on B(0,R)B\p{0, R}, Egorov's theorem gives EB(0,R)E \subseteq B\p{0, R} such that fn0f_n \to 0 uniformly on B(0,R)EB\p{0, R} \setminus E and so that m(E)<δm\p{E} < \delta. In particular, for nn large, we have fnε2R\abs{f_n} \leq \frac{\epsilon}{\sqrt{2R}} on B(0,R)EB\p{0, R} \setminus E. Hence, applying (*) to fχEf\chi_E and fχB(0,R)cf\chi_{B\p{0,R}^\comp}, we get

    fnL2fnχB(0,R)L2+fnχB(0,R)cL2fnχEL2+fnχB(0,R)EL2+2πfχB(0,R)cL22πfχEL2+ε2RχB(0,R)L2+2πε4πε+ε,\begin{aligned} \norm{f_n}_{L^2} &\leq \norm{f_n \chi_{B\p{0,R}}}_{L^2} + \norm{f_n \chi_{B\p{0,R}^\comp}}_{L^2} \\ &\leq \norm{f_n \chi_E}_{L^2} + \norm{f_n \chi_{B\p{0,R} \setminus E}}_{L^2} + 2\pi\norm{f \chi_{B\p{0,R}^\comp}}_{L^2} \\ &\leq 2\pi \norm{f \chi_E}_{L^2} + \frac{\epsilon}{\sqrt{2R}}\norm{\chi_{B\p{0,R}}}_{L^2} + 2\pi\epsilon \\ &\leq 4\pi\epsilon + \epsilon, \end{aligned}

    and the claim follows from sending ε0\epsilon \to 0.