Spring 2021 - Problem 2

measure theory

Let μ\mu and ν\nu be two finite positive Borel measures on Rn\R^n.

  1. Suppose that there exist Borel sets AnXA_n \subseteq X so that

    limnμ(An)=0andlimnν(XAn)=0.\lim_{n\to\infty} \mu\p{A_n} = 0 \quad\text{and}\quad \lim_{n\to\infty} \nu\p{X \setminus A_n} = 0.

    Show that μ\mu and ν\nu are mutually singular.

  2. Suppose there are non-negative Borel functions {fn}n\set{f_n}_n so that fn(x)>0f_n\p{x} > 0 for ν\nu-a.e. xx and

    limnfn(x)dμ(x)=0andlimn1fn(x)dν(x)=0.\lim_{n\to\infty} \int f_n\p{x} \,\diff\mu\p{x} = 0 \quad\text{and}\quad \lim_{n\to\infty} \int \frac{1}{f_n\p{x}} \,\diff\nu\p{x} = 0.

    Show that μ\mu and ν\nu are mutually singular.

Solution.
  1. Let A=n=1k=nAkA = \bigcup_{n=1}^\infty \bigcap_{k=n}^\infty A_k, which is Borel as a countable union and countable intersection of Borel sets. By deleting sets if necessary, we may assume without loss of generality that ν(Akc)12k\nu\p{A_k^\comp} \leq \frac{1}{2^k}. Then

    μ(A)=limNμ(n=1Nk=nAk)limNn=1Nμ(k=nAk)=0,\begin{aligned} \mu\p{A} &= \lim_{N\to\infty} \mu\p{\bigcup_{n=1}^N \bigcap_{k=n}^\infty A_k} \\ &\leq \lim_{N\to\infty} \sum_{n=1}^N \mu\p{\bigcap_{k=n}^\infty A_k} \\ &= 0, \end{aligned}

    since whenever mnm \geq n, we have μ(k=nAk)μ(Am)m0\mu\p{\bigcap_{k=n}^\infty A_k} \leq \mu\p{A_m} \xrightarrow{m\to\infty} 0. Similarly,

    ν(Ac)=limNν(n=1Nk=nAkc)=limNν(k=NAkc)limNk=N12k=0,\begin{aligned} \nu\p{A^\comp} &= \lim_{N\to\infty} \nu\p{\bigcap_{n=1}^N \bigcup_{k=n}^\infty A_k^\comp} \\ &= \lim_{N\to\infty} \nu\p{\bigcup_{k=N}^\infty A_k^\comp} \\ &\leq \lim_{N\to\infty} \sum_{k=N}^\infty \frac{1}{2^k} \\ &= 0, \end{aligned}

    since the infinite sum converges. Thus, μ(A)=ν(Ac)=0\mu\p{A} = \nu\p{A^\comp} = 0, so μν\mu \perp \nu.

  2. Since fnf_n is Borel, the set An={fn>1}={1fn<1}A_n = \set{f_n > 1} = \set{\frac{1}{f_n} < 1} is Borel. Then by Chebyshev's inequality,

    μ(An)fndμn0ν(Anc)1fndνn0.\begin{aligned} \mu\p{A_n} &\leq \int f_n \,\diff\mu \xrightarrow{n\to\infty} 0 \\ \nu\p{A_n^\comp} &\leq \int \frac{1}{f_n} \,\diff\nu \xrightarrow{n\to\infty} 0. \end{aligned}

    Thus, by (1), we see that μν\mu \perp \nu, as required.