Let μ \mu μ be a positive Borel probability measure on [ 0 , 1 ] \br{0, 1} [ 0 , 1 ] , and let
C = sup { μ ( E ) | E ⊆ [ 0 , 1 ] with m ( E ) = 1 2 } . C = \sup\,\set{\mu\p{E} \st E \subseteq \br{0, 1} \text{ with } m\p{E} = \frac{1}{2}}. C = sup { μ ( E ) ∣ ∣ E ⊆ [ 0 , 1 ] with m ( E ) = 2 1 } .
Show that there exists a Borel set F ⊆ [ 0 , 1 ] F \subseteq \br{0, 1} F ⊆ [ 0 , 1 ] such that
m ( F ) = 1 2 and μ ( F ) = C . m\p{F} = \frac{1}{2}
\quad\text{and}\quad
\mu\p{F} = C. m ( F ) = 2 1 and μ ( F ) = C .
Hint: When d μ = f d x \diff\mu = f \,\diff{x} d μ = f d x , one can sometimes take F = { x ∈ [ 0 , 1 ] | f ( x ) > λ } F = \set{x \in \br{0, 1} \st f\p{x} > \lambda} F = { x ∈ [ 0 , 1 ] ∣ f ( x ) > λ } , for a suitable λ ≥ 0 \lambda \geq 0 λ ≥ 0 .
Solution.
First suppose μ ≪ m \mu \ll m μ ≪ m so that d μ = f d x \diff\mu = f \,\diff{x} d μ = f d x with f ∈ L 1 ( [ 0 , 1 ] ) f \in L^1\p{\br{0,1}} f ∈ L 1 ( [ 0 , 1 ] ) . For t ≥ 0 t \geq 0 t ≥ 0 , let F t = { f ( x ) > t } F_t = \set{f\p{x} > t} F t = { f ( x ) > t } and set
λ = inf { t | m ( F t ) ≤ 1 2 } \lambda = \inf\, \set{t \st m\p{F_t} \leq \frac{1}{2}} λ = inf { t ∣ ∣ m ( F t ) ≤ 2 1 }
so that m ( F λ ) ≤ 1 2 m\p{F_\lambda} \leq \frac{1}{2} m ( F λ ) ≤ 2 1 . Observe that
m ( { f ( x ) ≥ λ } ) = m ( ⋂ n = 1 ∞ { f ( x ) > λ − 1 n } ) = m ( ⋂ n = 1 ∞ F λ − 1 n ) ≥ 1 2 . m\p{\set{f\p{x} \geq \lambda}}
= m\p{\bigcap_{n=1}^\infty \set{f\p{x} > \lambda - \frac{1}{n}}}
= m\p{\bigcap_{n=1}^\infty F_{\lambda - \frac{1}{n}}}
\geq \frac{1}{2}. m ( { f ( x ) ≥ λ } ) = m ( n = 1 ⋂ ∞ { f ( x ) > λ − n 1 } ) = m ( n = 1 ⋂ ∞ F λ − n 1 ) ≥ 2 1 .
Set E λ = { f ( x ) = λ } E_\lambda = \set{f\p{x} = \lambda} E λ = { f ( x ) = λ } , and notice that x ↦ m ( E λ ∩ [ 0 , x ] ) x \mapsto m\p{E_\lambda \cap \br{0, x}} x ↦ m ( E λ ∩ [ 0 , x ] ) is a continuous function by continuity of measures. In particular, by the intermediate value theorem and our estimate above, we see that there exists A ⊆ E λ A \subseteq E_\lambda A ⊆ E λ such that m ( A ) = 1 2 − m ( F λ ) m\p{A} = \frac{1}{2} - m\p{F_\lambda} m ( A ) = 2 1 − m ( F λ ) . Thus, if we let F = F λ ∪ A F = F_\lambda \cup A F = F λ ∪ A , then m ( F ) = 1 2 m\p{F} = \frac{1}{2} m ( F ) = 2 1 . We claim that μ ( F ) = C \mu\p{F} = C μ ( F ) = C as well. Indeed, suppose E ⊆ [ 0 , 1 ] E \subseteq \br{0, 1} E ⊆ [ 0 , 1 ] satisfies m ( E ) = 1 2 m\p{E} = \frac{1}{2} m ( E ) = 2 1 . Observe that
m ( E ) = m ( E ∩ F ) + m ( E ∖ F ) m ( F ) = m ( E ∩ F ) + m ( F ∖ E ) , \begin{aligned}
m\p{E}
&= m\p{E \cap F} + m\p{E \setminus F} \\
m\p{F}
&= m\p{E \cap F} + m\p{F \setminus E},
\end{aligned} m ( E ) m ( F ) = m ( E ∩ F ) + m ( E ∖ F ) = m ( E ∩ F ) + m ( F ∖ E ) ,
so because m ( E ) = m ( F ) m\p{E} = m\p{F} m ( E ) = m ( F ) , we have m ( E ∖ F ) = m ( F ∖ E ) m\p{E \setminus F} = m\p{F \setminus E} m ( E ∖ F ) = m ( F ∖ E ) . But on E ∖ F E \setminus F E ∖ F , we have f ≤ λ f \leq \lambda f ≤ λ , and on F ∖ E F \setminus E F ∖ E , we have f ≥ λ f \geq \lambda f ≥ λ . Thus,
μ ( E ) = ∫ E f d x = ∫ E ∩ F f d x + ∫ E ∖ F f d x ≤ ∫ E ∩ F f d x + ∫ F ∖ E f d x = ∫ F f d x = μ ( F ) , \begin{aligned}
\mu\p{E}
&= \int_E f \,\diff{x} \\
&= \int_{E \cap F} f \,\diff{x} + \int_{E \setminus F} f \,\diff{x} \\
&\leq \int_{E \cap F} f \,\diff{x} + \int_{F \setminus E} f \,\diff{x} \\
&= \int_{F} f \,\diff{x} \\
&= \mu\p{F},
\end{aligned} μ ( E ) = ∫ E f d x = ∫ E ∩ F f d x + ∫ E ∖ F f d x ≤ ∫ E ∩ F f d x + ∫ F ∖ E f d x = ∫ F f d x = μ ( F ) ,
so because E E E was arbitrary, it follows that μ ( F ) = C \mu\p{F} = C μ ( F ) = C .
Finally, in the most general case, we may apply the Lebesgue-Radon-Nikodym theorem to write d μ = f d x + d λ \diff\mu = f \,\diff{x} + \diff\lambda d μ = f d x + d λ , where λ \lambda λ is singular with respect to Lebesgue measure. Then by the special case, there exists F F F such that m ( F ) = 1 2 m\p{F} = \frac{1}{2} m ( F ) = 2 1 and ∫ F f d x = C \int_F f \,\diff{x} = C ∫ F f d x = C . Let S S S be such that m ( S ) = λ ( S c ) = 0 m\p{S} = \lambda\p{S^\comp} = 0 m ( S ) = λ ( S c ) = 0 , and let F ′ = F ∩ S c F' = F \cap S^\comp F ′ = F ∩ S c . Then λ ( F ′ ) = 0 \lambda\p{F'} = 0 λ ( F ′ ) = 0 and so
μ ( F ′ ) = ∫ F ∩ S c f d x + ∫ S f d x = ∫ F ′ d x = C , \mu\p{F'}
= \int_{F \cap S^\comp} f \,\diff{x} + \int_S f \,\diff{x}
= \int_{F'} \,\diff{x}
= C, μ ( F ′ ) = ∫ F ∩ S c f d x + ∫ S f d x = ∫ F ′ d x = C ,
which was what we wanted to show.