Spring 2020 - Problem 9

inhomogeneous Cauchy integral formula

Let fL1(C)C1(C)f \in L^1\p{\C} \cap C^1\p{\C}. Show that the integral

u(z)=12πCf(ζ)ζzdλ(ζ),zC,u\p{z} = -\frac{1}{2\pi} \iint_\C \frac{f\p{\zeta}}{\zeta - z} \,\diff\lambda\p{\zeta}, \quad z \in \C,

defines a C1C^1 function on the whole complex plane that satisfies

(x+iy)u(x+iy)=f(x+iy).\p{\pder{}{x} + i\pder{}{y}}u\p{x + iy} = f\p{x + iy}.

In this problem, dλ(ζ)\diff\lambda\p{\zeta} denotes (planar) Lebesgue measure on C\C and C1C^1 is meant in the real-variable sense.

Solution.

Recall that by an application of Green's theorem, we have for any gCc1(C)g \in C_{\mathrm{c}}^1\p{\C} that

g(z)=1πCgζ(ζ)1ζzdλ(ζ).g\p{z} = -\frac{1}{\pi} \iint_\C \pder{g}{\conj{\zeta}}\p{\zeta} \frac{1}{\zeta - z} \,\diff\lambda\p{\zeta}.

To extend this to our ff, let {Kn}n\set{K_n}_n be a compact exhaustion of C\C, e.g., Kn=B(0,n)K_n = \cl{B\p{0, n}}. Let {φn}nCc1(C)\set{\phi_n}_n \in C_{\mathrm{c}}^1\p{\C} be a bump function on KnK_n, i.e., 0φn10 \leq \phi_n \leq 1 and φn=1\phi_n = 1 on a neighborhood of KnK_n. Let ψ1=φ1\psi_1 = \phi_1 and ψn=φnφn1\psi_n = \phi_n - \phi_{n-1} for n2n \geq 2 so that ψn\psi_n is 00 on a neighborhood of Kn1K_{n-1}. Since KnKn+1K_n \subseteq K_{n+1} for each nn, it follows that this sum is locally finite. Hence, at zKNz \in K_N, we have

n=1ψn(z)=φ1(z)+n=2N(φn(z)φn1(z))=φN(z)=1,\sum_{n=1}^\infty \psi_n\p{z} = \phi_1\p{z} + \sum_{n=2}^N \p{\phi_n\p{z} - \phi_{n-1}\p{z}} = \phi_N\p{z} = 1,

so {ψn}n\set{\psi_n}_n is a locally finite partition of unity. Thus,

u(z)=12πCn=1ψn(ζ)f(ζ)ζzdλ(ζ)=12πCn=1ψn(ζ+z)f(ζ+z)ζdλ(ζ)(ζζz)=12πn=1Cψn(ζ+z)f(ζ+z)ζdλ(ζ),\begin{aligned} u\p{z} &= -\frac{1}{2\pi} \iint_\C \sum_{n=1}^\infty \frac{\psi_n\p{\zeta}f\p{\zeta}}{\zeta - z} \,\diff\lambda\p{\zeta} \\ &= -\frac{1}{2\pi} \iint_\C \sum_{n=1}^\infty \frac{\psi_n\p{\zeta + z}f\p{\zeta + z}}{\zeta} \,\diff\lambda\p{\zeta} && \p{\zeta \mapsto \zeta - z} \\ &= -\frac{1}{2\pi} \sum_{n=1}^\infty \iint_\C \frac{\psi_n\p{\zeta + z}f\p{\zeta + z}}{\zeta} \,\diff\lambda\p{\zeta}, \end{aligned}

since after the change of variables, the sum is finite for each zCz \in \C. Again by local finiteness, because ψn,f\psi_n, f are C1C^1, it follows that uu is also C1C^1. Similarly, local finiteness allows us to interchange the derivative and the sum, and because fL1(C)f \in L^1\p{\C} and each ψn\psi_n is compactly supported, we may differentiate under the integral sign and apply change of variables freely:

uz(z)=1πn=1zCψn(ζ+z)f(ζ+z)ζdλ(ζ)=1πn=1C(ψnf)ζ(ζ+z)1ζdλ(ζ)=1πn=1C(ψnf)ζ(ζ)1ζzdλ(ζ)(ζζ+z)=n=1ψn(z)f(z)(ψnfCc1)=f(z),\begin{aligned} \pder{u}{\conj{z}}\p{z} &= -\frac{1}{\pi} \sum_{n=1}^\infty \pder{}{\conj{z}} \iint_\C \frac{\psi_n\p{\zeta + z}f\p{\zeta + z}}{\zeta} \,\diff\lambda\p{\zeta} \\ &= -\frac{1}{\pi} \sum_{n=1}^\infty \iint_\C \pder{\p{\psi_nf}}{\conj{\zeta}}\p{\zeta + z} \frac{1}{\zeta} \,\diff\lambda\p{\zeta} \\ &= -\frac{1}{\pi} \sum_{n=1}^\infty \iint_\C \pder{\p{\psi_nf}}{\conj{\zeta}}\p{\zeta} \frac{1}{\zeta - z} \,\diff\lambda\p{\zeta} && \p{\zeta \mapsto \zeta + z} \\ &= \sum_{n=1}^\infty \psi_n\p{z} f\p{z} && \p{\psi_n f \in C_{\mathrm{c}}^1} \\ &= f\p{z}, \end{aligned}

since we had a partition of unity.