Spring 2020 - Problem 6

Lp spaces, weak convergence

Let us define a sequence of linear functions on L(R)L^\infty\p{\R} as follows:

Ln(f)=1n!0xnexf(x)dx.L_n\p{f} = \frac{1}{n!} \int_0^\infty x^n e^{-x} f\p{x} \,\diff{x}.
  1. Prove that no subsequence of this subsequence converges weak-*.
  2. Explain why this does not contradict the Banach-Alaoglu theorem.
Solution.
  1. Notice that Ln(1)L_n\p{1} is just the integral of the Gamma function, so Ln(1)=1L_n\p{1} = 1 for all nn. Let {Lnk}k\set{L_{n_k}}_k be a subsequence and ε>0\epsilon > 0. Let r1=0r_1 = 0 and R1>r1R_1 > r_1 be so large that

    1n1!R1xn1exdx<ε.\frac{1}{n_1!} \int_{R_1}^\infty x^{n_1} e^{-x} \,\diff{x} < \epsilon.

    In general, let rk=Rk1r_k = R_{k-1} and notice that

    1n!0rkxnexdxn0,\frac{1}{n!} \int_0^{r_k} x^{n} e^{-x} \,\diff{x} \xrightarrow{n\to\infty} 0,

    so replace nkn_k with an integer so large that

    1nk!0rkxnkexdx<ε\frac{1}{n_k!} \int_0^{r_k} x^{n_k} e^{-x} \,\diff{x} < \epsilon

    and pick Rk>rkR_k > r_k large enough that

    1nk!Rkxnkexdx<ε.\frac{1}{n_k!} \int_{R_k}^\infty x^{n_k} e^{-x} \,\diff{x} < \epsilon.

    These are picked so that

    1=1nk!0rkxnkexdx+1nk!rkRkxnkexdx+1nk!Rkxnkexdx1nk!rkRkxnkexdx12ε\begin{gathered} 1 = \frac{1}{n_k!} \int_0^{r_k} x^{n_k} e^{-x} \,\diff{x} + \frac{1}{n_k!} \int_{r_k}^{R_k} x^{n_k} e^{-x} \,\diff{x} + \frac{1}{n_k!} \int_{R_k}^\infty x^{n_k} e^{-x} \,\diff{x} \\ \frac{1}{n_k!} \int_{r_k}^{R_k} x^{n_k} e^{-x} \,\diff{x} \geq 1 - 2\epsilon \end{gathered}

    for every k1k \geq 1. Thus, if we let

    f(x)=k=1(1)kχ(rk,Rk),f\p{x} = \sum_{k=1}^\infty \p{-1}^k \chi_{\p{r_k,R_k}},

    then we have fL(R)f \in L^\infty\p{\R}. If kk is odd, then

    Lnk(f)(12ε)L_{n_k}\p{f} \leq -\p{1 - 2\epsilon}

    and if kk is even,

    Lnk(f)12ε.L_{n_k}\p{f} \geq 1 - 2\epsilon.

    Hence, if ε\epsilon is small enough, say, ε=14\epsilon = \frac{1}{4}, then Lnk(f)L_{n_k}\p{f} is essentially alternating, so this subsequence cannot converge weak-*.

  2. (1) simply tells us that the unit ball in (L(R))\p{L^\infty\p{\R}}^* is not sequentially compact, which is not necessarily equivalent to compact when the weak-* topology is not metrizable.