Spring 2020 - Problem 2

Helly's selection theorem, Lp spaces

Assume fn ⁣:RR\func{f_n}{\R}{\R} is a sequence of differentiable functions satisfying

Rfn(x)dx1andRfn(x)dx1.\int_\R \abs{f_n\p{x}} \,\diff{x} \leq 1 \quad\text{and}\quad \int_\R \abs{f_n'\p{x}} \,\diff{x} \leq 1.

Assume also that for any ε>0\epsilon > 0 there exists R(ε)>0R\p{\epsilon} > 0 such that

supn{xR(ε)}fn(x)dx<ε.\sup_n \int_{\set{\abs{x} \geq R\p{\epsilon}}} \abs{f_n\p{x}} \,\diff{x} < \epsilon.

Show that there exists a subsequence of {fn}n\set{f_n}_n that converges in L1(R)L^1\p{\R}.

Solution.

Observe that fn(x)1\abs{f_n\p{x}} \leq 1 everywhere for every n1n \geq 1. Indeed, because fnL1(R)f_n' \in L^1\p{\R}, we may apply the fundamental theorem of calculus to get for any [a,b]\br{a, b} that

Vab(fn)=supat1<<tnbk=1m1fn(tk+1)fn(tk)sup0t1<<tn1k=1m1tktk+1fn(t)dtfnL11.\begin{aligned} V_a^b\p{f_n} &= \sup_{a \leq t_1 < \cdots < t_n \leq b} \sum_{k=1}^{m-1} \abs{f_n\p{t_{k+1}} - f_n\p{t_k}} \\ &\leq \sup_{0 \leq t_1 < \cdots < t_n \leq 1} \sum_{k=1}^{m-1} \int_{t_k}^{t_{k+1}} \abs{f_n'\p{t}} \,\diff{t} \\ &\leq \norm{f_n'}_{L^1} \\ &\leq 1. \end{aligned}

Hence, if fn(x)=1+εf_n\p{x} = 1 + \epsilon for some ε>0\epsilon > 0, then

fn(x)fn(y)Vxy(fn)1    fn(y)ε>0\abs{f_n\p{x} - f_n\p{y}} \leq V_x^y\p{f_n} \leq 1 \implies f_n\p{y} \geq \epsilon > 0

for any yRy \in \R, which contradicts integrability of fnf_n. Let φCc(R)\phi \in C_{\mathrm{c}}^\infty\p{\R} be the standard mollifier, i.e.,

φ(x)={Cexp(1x21)if x<1,0otherwise,\phi\p{x} = \begin{cases} C\exp\p{\frac{1}{\abs{x}^2 - 1}} & \text{if } x < 1, \\ 0 & \text{otherwise}, \end{cases}

where CC is chosen so that Rφ(x)dx=1\int_\R \phi\p{x} \,\diff{x} = 1, and set φε(x)=1εφ(xε)\phi_\epsilon\p{x} = \frac{1}{\epsilon} \phi\p{\frac{x}{\epsilon}}. Observe that

(φεfn)(x)Rfn(xy)φε(y)dyRfn(xεy)φ(y)dy(yyε)fnL1φLφL,\begin{aligned} \abs{\p{\phi_\epsilon * f_n}\p{x}} &\leq \int_\R \abs{f_n\p{x - y}\phi_\epsilon\p{y}} \,\diff{y} \\ &\leq \int_\R \abs{f_n\p{x - \epsilon y}\phi\p{y}} \,\diff{y} && \p{y \mapsto \frac{y}{\epsilon}} \\ &\leq \norm{f_n}_{L^1} \norm{\phi}_{L^\infty} \\ &\leq \norm{\phi}_{L^\infty}, \end{aligned}

so the φεfn\phi_\epsilon * f_n are uniformly bounded. Similarly,

(φεfn)(x)Rfn(xy)φε(y)dy=1εRfn(xεy)φ(y)dy(yyε)fnL1φLεφLε,\begin{aligned} \abs{\p{\phi_\epsilon * f_n}'\p{x}} &\leq \int_\R \abs{f_n\p{x - y} \phi_\epsilon'\p{y}} \,\diff{y} \\ &= \frac{1}{\epsilon} \int_\R \abs{f_n\p{x - \epsilon y}\phi'\p{y}} \,\diff{y} && \p{y \mapsto \frac{y}{\epsilon}} \\ &\leq \frac{\norm{f_n}_{L^1} \norm{\phi'}_{L^\infty}}{\epsilon} \\ &\leq \frac{\norm{\phi'}_{L^\infty}}{\epsilon}, \end{aligned}

so the φεfn\phi_\epsilon * f_n are also equicontinuous for each fixed ε>0\epsilon > 0. Thus, for every m1m \geq 1, Arzelà-Ascoli gives a subsequence {φ1/mfnk}k\set{\phi_{1/m} * f_{n_k}}_k which converges locally uniformly to some gmg_m. Now fix ε>0\epsilon > 0. By assumption, there exists R(ε)>0R\p{\epsilon} > 0 such that

supn{x>R(ε)}fn(x)dx<ε.\sup_n \int_{\set{\abs{x} > R\p{\epsilon}}} \abs{f_n\p{x}} \,\diff{x} < \epsilon.

Also,

φ1/mfnkfnkL1RRfnk(xy)fnk(x)φ1/m(y)dydx=RRfnk(xym)fnk(x)φ(y)dydx=Rfnk(ym)fnkL1φ(y)dy(Fubini-Tonelli).\begin{aligned} \norm{\phi_{1/m} * f_{n_k} - f_{n_k}}_{L^1} &\leq \int_\R \int_\R \abs{f_{n_k}\p{x - y} - f_{n_k}\p{x}}\phi_{1/m}\p{y} \,\diff{y} \,\diff{x} \\ &= \int_\R \int_\R \abs{f_{n_k}\p{x - \frac{y}{m}} - f_{n_k}\p{x}}\phi\p{y} \,\diff{y} \,\diff{x} \\ &= \int_\R \norm{f_{n_k}\p{\cdot - \frac{y}{m}} - f_{n_k}}_{L^1} \phi\p{y} \,\diff{y} && \p{\text{Fubini-Tonelli}}. \end{aligned}

Since translation is continuous in L1(R)L^1\p{\R}, it follows that the integrand is continuous, and it is bounded by 2fnkL122\norm{f_{n_k}}_{L^1} \leq 2. Hence, by dominated convergence, we get

limmφ1/mfnkfnkL1=0.\lim_{m\to\infty} \norm{\phi_{1/m} * f_{n_k} - f_{n_k}}_{L^1} = 0.

Hence,

fnkfnL1fnkfnL1([R(ε),Rε])+2εfnkφ1/mfnkL1+fnφ1/mfnL1+φ1/mfnkgmL1([R(ε),R(ε)])+φ1/mfngmL1([R(ε),R(ε)])+2ε.\begin{aligned} \norm{f_{n_k} - f_{n_\ell}}_{L^1} &\leq \norm{f_{n_k} - f_{n_\ell}}_{L^1\p{\br{-R\p{\epsilon}, R\epsilon}}} + 2\epsilon \\ &\leq \norm{f_{n_k} - \phi_{1/m} * f_{n_k}}_{L^1} + \norm{f_{n_\ell} - \phi_{1/m} * f_{n_\ell}}_{L^1} + \norm{\phi_{1/m} * f_{n_k} - g_m}_{L^1\p{\br{-R\p{\epsilon}, R\p{\epsilon}}}} + \norm{\phi_{1/m} * f_{n_\ell} - g_m}_{L^1\p{\br{-R\p{\epsilon}, R\p{\epsilon}}}} + 2\epsilon. \end{aligned}

By L1L^1 convergence, if mm is large enough, then

fnkφ1/mfnkL1+fnφ1/mfnL1ε.\norm{f_{n_k} - \phi_{1/m} * f_{n_k}}_{L^1} + \norm{f_{n_\ell} - \phi_{1/m} * f_{n_\ell}}_{L^1} \leq \epsilon.

Since [R(ε),R(ε)]\br{-R\p{\epsilon}, R\p{\epsilon}} is compact, we have for large k,k, \ell that

φ1/mfnkgmL1([R(ε),R(ε)])+φ1/mfngmL1([R(ε),R(ε)])ε.\norm{\phi_{1/m} * f_{n_k} - g_m}_{L^1\p{\br{-R\p{\epsilon}, R\p{\epsilon}}}} + \norm{\phi_{1/m} * f_{n_\ell} - g_m}_{L^1\p{\br{-R\p{\epsilon}, R\p{\epsilon}}}} \leq \epsilon.

Overall, we get

fnkfnL14ε,\norm{f_{n_k} - f_{n_\ell}}_{L^1} \leq 4\epsilon,

for large k,k, \ell (and how large only depends on ε\epsilon, e.g., it does not depend on mm).