Solution.
Observe that ∣ f n ( x ) ∣ ≤ 1 \abs{f_n\p{x}} \leq 1 ∣ f n ( x ) ∣ ≤ 1 everywhere for every n ≥ 1 n \geq 1 n ≥ 1 . Indeed, because f n ′ ∈ L 1 ( R ) f_n' \in L^1\p{\R} f n ′ ∈ L 1 ( R ) , we may apply the fundamental theorem of calculus to get for any [ a , b ] \br{a, b} [ a , b ] that
V a b ( f n ) = sup a ≤ t 1 < ⋯ < t n ≤ b ∑ k = 1 m − 1 ∣ f n ( t k + 1 ) − f n ( t k ) ∣ ≤ sup 0 ≤ t 1 < ⋯ < t n ≤ 1 ∑ k = 1 m − 1 ∫ t k t k + 1 ∣ f n ′ ( t ) ∣ d t ≤ ∥ f n ′ ∥ L 1 ≤ 1. \begin{aligned}
V_a^b\p{f_n}
&= \sup_{a \leq t_1 < \cdots < t_n \leq b} \sum_{k=1}^{m-1} \abs{f_n\p{t_{k+1}} - f_n\p{t_k}} \\
&\leq \sup_{0 \leq t_1 < \cdots < t_n \leq 1} \sum_{k=1}^{m-1} \int_{t_k}^{t_{k+1}} \abs{f_n'\p{t}} \,\diff{t} \\
&\leq \norm{f_n'}_{L^1} \\
&\leq 1.
\end{aligned} V a b ( f n ) = a ≤ t 1 < ⋯ < t n ≤ b sup k = 1 ∑ m − 1 ∣ f n ( t k + 1 ) − f n ( t k ) ∣ ≤ 0 ≤ t 1 < ⋯ < t n ≤ 1 sup k = 1 ∑ m − 1 ∫ t k t k + 1 ∣ f n ′ ( t ) ∣ d t ≤ ∥ f n ′ ∥ L 1 ≤ 1.
Hence, if f n ( x ) = 1 + ε f_n\p{x} = 1 + \epsilon f n ( x ) = 1 + ε for some ε > 0 \epsilon > 0 ε > 0 , then
∣ f n ( x ) − f n ( y ) ∣ ≤ V x y ( f n ) ≤ 1 ⟹ f n ( y ) ≥ ε > 0 \abs{f_n\p{x} - f_n\p{y}} \leq V_x^y\p{f_n} \leq 1
\implies f_n\p{y} \geq \epsilon > 0 ∣ f n ( x ) − f n ( y ) ∣ ≤ V x y ( f n ) ≤ 1 ⟹ f n ( y ) ≥ ε > 0
for any y ∈ R y \in \R y ∈ R , which contradicts integrability of f n f_n f n . Let φ ∈ C c ∞ ( R ) \phi \in C_{\mathrm{c}}^\infty\p{\R} φ ∈ C c ∞ ( R ) be the standard mollifier, i.e.,
φ ( x ) = { C exp ( 1 ∣ x ∣ 2 − 1 ) if x < 1 , 0 otherwise , \phi\p{x}
= \begin{cases}
C\exp\p{\frac{1}{\abs{x}^2 - 1}} & \text{if } x < 1, \\
0 & \text{otherwise},
\end{cases} φ ( x ) = { C exp ( ∣ x ∣ 2 − 1 1 ) 0 if x < 1 , otherwise ,
where C C C is chosen so that ∫ R φ ( x ) d x = 1 \int_\R \phi\p{x} \,\diff{x} = 1 ∫ R φ ( x ) d x = 1 , and set φ ε ( x ) = 1 ε φ ( x ε ) \phi_\epsilon\p{x} = \frac{1}{\epsilon} \phi\p{\frac{x}{\epsilon}} φ ε ( x ) = ε 1 φ ( ε x ) . Observe that
∣ ( φ ε ∗ f n ) ( x ) ∣ ≤ ∫ R ∣ f n ( x − y ) φ ε ( y ) ∣ d y ≤ ∫ R ∣ f n ( x − ε y ) φ ( y ) ∣ d y ( y ↦ y ε ) ≤ ∥ f n ∥ L 1 ∥ φ ∥ L ∞ ≤ ∥ φ ∥ L ∞ , \begin{aligned}
\abs{\p{\phi_\epsilon * f_n}\p{x}}
&\leq \int_\R \abs{f_n\p{x - y}\phi_\epsilon\p{y}} \,\diff{y} \\
&\leq \int_\R \abs{f_n\p{x - \epsilon y}\phi\p{y}} \,\diff{y}
&& \p{y \mapsto \frac{y}{\epsilon}} \\
&\leq \norm{f_n}_{L^1} \norm{\phi}_{L^\infty} \\
&\leq \norm{\phi}_{L^\infty},
\end{aligned} ∣ ( φ ε ∗ f n ) ( x ) ∣ ≤ ∫ R ∣ f n ( x − y ) φ ε ( y ) ∣ d y ≤ ∫ R ∣ f n ( x − ε y ) φ ( y ) ∣ d y ≤ ∥ f n ∥ L 1 ∥ φ ∥ L ∞ ≤ ∥ φ ∥ L ∞ , ( y ↦ ε y )
so the φ ε ∗ f n \phi_\epsilon * f_n φ ε ∗ f n are uniformly bounded. Similarly,
∣ ( φ ε ∗ f n ) ′ ( x ) ∣ ≤ ∫ R ∣ f n ( x − y ) φ ε ′ ( y ) ∣ d y = 1 ε ∫ R ∣ f n ( x − ε y ) φ ′ ( y ) ∣ d y ( y ↦ y ε ) ≤ ∥ f n ∥ L 1 ∥ φ ′ ∥ L ∞ ε ≤ ∥ φ ′ ∥ L ∞ ε , \begin{aligned}
\abs{\p{\phi_\epsilon * f_n}'\p{x}}
&\leq \int_\R \abs{f_n\p{x - y} \phi_\epsilon'\p{y}} \,\diff{y} \\
&= \frac{1}{\epsilon} \int_\R \abs{f_n\p{x - \epsilon y}\phi'\p{y}} \,\diff{y}
&& \p{y \mapsto \frac{y}{\epsilon}} \\
&\leq \frac{\norm{f_n}_{L^1} \norm{\phi'}_{L^\infty}}{\epsilon} \\
&\leq \frac{\norm{\phi'}_{L^\infty}}{\epsilon},
\end{aligned} ∣ ( φ ε ∗ f n ) ′ ( x ) ∣ ≤ ∫ R ∣ f n ( x − y ) φ ε ′ ( y ) ∣ d y = ε 1 ∫ R ∣ f n ( x − ε y ) φ ′ ( y ) ∣ d y ≤ ε ∥ f n ∥ L 1 ∥ φ ′ ∥ L ∞ ≤ ε ∥ φ ′ ∥ L ∞ , ( y ↦ ε y )
so the φ ε ∗ f n \phi_\epsilon * f_n φ ε ∗ f n are also equicontinuous for each fixed ε > 0 \epsilon > 0 ε > 0 . Thus, for every m ≥ 1 m \geq 1 m ≥ 1 , Arzelà-Ascoli gives a subsequence { φ 1 / m ∗ f n k } k \set{\phi_{1/m} * f_{n_k}}_k { φ 1/ m ∗ f n k } k which converges locally uniformly to some g m g_m g m . Now fix ε > 0 \epsilon > 0 ε > 0 . By assumption, there exists R ( ε ) > 0 R\p{\epsilon} > 0 R ( ε ) > 0 such that
sup n ∫ { ∣ x ∣ > R ( ε ) } ∣ f n ( x ) ∣ d x < ε . \sup_n \int_{\set{\abs{x} > R\p{\epsilon}}} \abs{f_n\p{x}} \,\diff{x} < \epsilon. n sup ∫ { ∣ x ∣ > R ( ε ) } ∣ f n ( x ) ∣ d x < ε .
Also,
∥ φ 1 / m ∗ f n k − f n k ∥ L 1 ≤ ∫ R ∫ R ∣ f n k ( x − y ) − f n k ( x ) ∣ φ 1 / m ( y ) d y d x = ∫ R ∫ R ∣ f n k ( x − y m ) − f n k ( x ) ∣ φ ( y ) d y d x = ∫ R ∥ f n k ( ⋅ − y m ) − f n k ∥ L 1 φ ( y ) d y ( Fubini-Tonelli ) . \begin{aligned}
\norm{\phi_{1/m} * f_{n_k} - f_{n_k}}_{L^1}
&\leq \int_\R \int_\R \abs{f_{n_k}\p{x - y} - f_{n_k}\p{x}}\phi_{1/m}\p{y} \,\diff{y} \,\diff{x} \\
&= \int_\R \int_\R \abs{f_{n_k}\p{x - \frac{y}{m}} - f_{n_k}\p{x}}\phi\p{y} \,\diff{y} \,\diff{x} \\
&= \int_\R \norm{f_{n_k}\p{\cdot - \frac{y}{m}} - f_{n_k}}_{L^1} \phi\p{y} \,\diff{y}
&& \p{\text{Fubini-Tonelli}}.
\end{aligned} ∥ ∥ φ 1/ m ∗ f n k − f n k ∥ ∥ L 1 ≤ ∫ R ∫ R ∣ f n k ( x − y ) − f n k ( x ) ∣ φ 1/ m ( y ) d y d x = ∫ R ∫ R ∣ ∣ f n k ( x − m y ) − f n k ( x ) ∣ ∣ φ ( y ) d y d x = ∫ R ∥ ∥ f n k ( ⋅ − m y ) − f n k ∥ ∥ L 1 φ ( y ) d y ( Fubini-Tonelli ) .
Since translation is continuous in L 1 ( R ) L^1\p{\R} L 1 ( R ) , it follows that the integrand is continuous, and it is bounded by 2 ∥ f n k ∥ L 1 ≤ 2 2\norm{f_{n_k}}_{L^1} \leq 2 2 ∥ f n k ∥ L 1 ≤ 2 . Hence, by dominated convergence, we get
lim m → ∞ ∥ φ 1 / m ∗ f n k − f n k ∥ L 1 = 0. \lim_{m\to\infty} \norm{\phi_{1/m} * f_{n_k} - f_{n_k}}_{L^1} = 0. m → ∞ lim ∥ ∥ φ 1/ m ∗ f n k − f n k ∥ ∥ L 1 = 0.
Hence,
∥ f n k − f n ℓ ∥ L 1 ≤ ∥ f n k − f n ℓ ∥ L 1 ( [ − R ( ε ) , R ε ] ) + 2 ε ≤ ∥ f n k − φ 1 / m ∗ f n k ∥ L 1 + ∥ f n ℓ − φ 1 / m ∗ f n ℓ ∥ L 1 + ∥ φ 1 / m ∗ f n k − g m ∥ L 1 ( [ − R ( ε ) , R ( ε ) ] ) + ∥ φ 1 / m ∗ f n ℓ − g m ∥ L 1 ( [ − R ( ε ) , R ( ε ) ] ) + 2 ε . \begin{aligned}
\norm{f_{n_k} - f_{n_\ell}}_{L^1}
&\leq \norm{f_{n_k} - f_{n_\ell}}_{L^1\p{\br{-R\p{\epsilon}, R\epsilon}}} + 2\epsilon \\
&\leq \norm{f_{n_k} - \phi_{1/m} * f_{n_k}}_{L^1} + \norm{f_{n_\ell} - \phi_{1/m} * f_{n_\ell}}_{L^1} + \norm{\phi_{1/m} * f_{n_k} - g_m}_{L^1\p{\br{-R\p{\epsilon}, R\p{\epsilon}}}} + \norm{\phi_{1/m} * f_{n_\ell} - g_m}_{L^1\p{\br{-R\p{\epsilon}, R\p{\epsilon}}}} + 2\epsilon.
\end{aligned} ∥ f n k − f n ℓ ∥ L 1 ≤ ∥ f n k − f n ℓ ∥ L 1 ( [ − R ( ε ) , Rε ] ) + 2 ε ≤ ∥ ∥ f n k − φ 1/ m ∗ f n k ∥ ∥ L 1 + ∥ ∥ f n ℓ − φ 1/ m ∗ f n ℓ ∥ ∥ L 1 + ∥ ∥ φ 1/ m ∗ f n k − g m ∥ ∥ L 1 ( [ − R ( ε ) , R ( ε ) ] ) + ∥ ∥ φ 1/ m ∗ f n ℓ − g m ∥ ∥ L 1 ( [ − R ( ε ) , R ( ε ) ] ) + 2 ε .
By L 1 L^1 L 1 convergence, if m m m is large enough, then
∥ f n k − φ 1 / m ∗ f n k ∥ L 1 + ∥ f n ℓ − φ 1 / m ∗ f n ℓ ∥ L 1 ≤ ε . \norm{f_{n_k} - \phi_{1/m} * f_{n_k}}_{L^1} + \norm{f_{n_\ell} - \phi_{1/m} * f_{n_\ell}}_{L^1}
\leq \epsilon. ∥ ∥ f n k − φ 1/ m ∗ f n k ∥ ∥ L 1 + ∥ ∥ f n ℓ − φ 1/ m ∗ f n ℓ ∥ ∥ L 1 ≤ ε .
Since [ − R ( ε ) , R ( ε ) ] \br{-R\p{\epsilon}, R\p{\epsilon}} [ − R ( ε ) , R ( ε ) ] is compact, we have for large k , ℓ k, \ell k , ℓ that
∥ φ 1 / m ∗ f n k − g m ∥ L 1 ( [ − R ( ε ) , R ( ε ) ] ) + ∥ φ 1 / m ∗ f n ℓ − g m ∥ L 1 ( [ − R ( ε ) , R ( ε ) ] ) ≤ ε . \norm{\phi_{1/m} * f_{n_k} - g_m}_{L^1\p{\br{-R\p{\epsilon}, R\p{\epsilon}}}} + \norm{\phi_{1/m} * f_{n_\ell} - g_m}_{L^1\p{\br{-R\p{\epsilon}, R\p{\epsilon}}}}
\leq \epsilon. ∥ ∥ φ 1/ m ∗ f n k − g m ∥ ∥ L 1 ( [ − R ( ε ) , R ( ε ) ] ) + ∥ ∥ φ 1/ m ∗ f n ℓ − g m ∥ ∥ L 1 ( [ − R ( ε ) , R ( ε ) ] ) ≤ ε .
Overall, we get
∥ f n k − f n ℓ ∥ L 1 ≤ 4 ε , \norm{f_{n_k} - f_{n_\ell}}_{L^1}
\leq 4\epsilon, ∥ f n k − f n ℓ ∥ L 1 ≤ 4 ε ,
for large k , ℓ k, \ell k , ℓ (and how large only depends on ε \epsilon ε , e.g., it does not depend on m m m ).