Spring 2020 - Problem 10

calculation, residue theorem

Evaluate the improper Riemann integral

0x21x2+1sinxxdx.\int_0^\infty \frac{x^2 - 1}{x^2 + 1} \frac{\sin{x}}{x} \,\diff{x}.

Justify all manipulations.

Solution.

Let f(z)=z21z2+1eizzf\p{z} = \frac{z^2 - 1}{z^2 + 1} \frac{e^{iz}}{z}. For 0<ε<R0 < \epsilon < R, let γε,R\gamma_{\epsilon,R} be the contour

γε,R=[ε,R]{Reiθ|0θπ}[R,ε]{εeiθ|0θπ}\gamma_{\epsilon,R} = \br{\epsilon, R} \cup \set{Re^{i\theta} \st 0 \leq \theta \leq \pi} \cup \br{-R, -\epsilon} \cup \set{\epsilon e^{i\theta} \st 0 \leq \theta \leq \pi}

oriented counter-clockwise. On the large semi-circle CRC_R, we have

CRf(z)dz0πR2+1R21eRsinθdθ=2(R2+1)R210π/2eRsinθdθ2(R2+1)R210π/2e2Rθ/πdθ=π(R2+1)R(R21)(1eR)R0.\begin{aligned} \abs{\int_{C_R} f\p{z} \,\diff{z}} &\leq \int_0^\pi \frac{R^2 + 1}{R^2 - 1} e^{-R\sin\theta} \,\diff\theta \\ &= \frac{2\p{R^2 + 1}}{R^2 - 1} \int_0^{\pi/2} e^{-R\sin\theta} \,\diff\theta \\ &\leq \frac{2\p{R^2 + 1}}{R^2 - 1} \int_0^{\pi/2} e^{-2R\theta/\pi} \,\diff\theta \\ &= \frac{\pi\p{R^2 + 1}}{R\p{R^2 - 1}} \p{1 - e^{-R}} \xrightarrow{R\to\infty} 0. \end{aligned}

On CεC_\epsilon, we get a half residue in the limit: Notice that f(z)+1zf\p{z} + \frac{1}{z} is holomorphic near z=0z = 0 since ff has residue 1-1 there, so it is bounded near z=0z = 0 by some M>0M > 0. Hence,

Cεf(z)+1zdzMCεε00    limε0Cεf(z)dz=πi.\begin{gathered} \abs{\int_{C_\epsilon} f\p{z} + \frac{1}{z} \,\diff{z}} \leq M\abs{C_\epsilon} \xrightarrow{\epsilon\to0} 0 \\ \implies \lim_{\epsilon\to0} \int_{C_\epsilon} f\p{z} \,\diff{z} = \pi i. \end{gathered}

Finally, our γε,R\gamma_{\epsilon,R} contains a pole at z=iz = i, which gives the residue

Res(f;i)=limzi(zi)f(z)=limziz21z+ieizz=e1.\Res{f}{i} = \lim_{z\to i} \,\p{z - i}f\p{z} = \lim_{z\to i} \frac{z^2 - 1}{z + i} \frac{e^{iz}}{z} = e^{-1}.

Thus, by the residue theorem, sending ε0\epsilon \to 0 and RR \to \infty, we get

x21x2+1eixxdx=2πie1πi.\int_{-\infty}^\infty \frac{x^2 - 1}{x^2 + 1} \frac{e^{ix}}{x} \,\diff{x} = 2\pi i e^{-1} - \pi i.

Taking imaginary parts and noting that the integrand is even, we have

0x21x2+1sinxxdx=πeπ2.\int_0^\infty \frac{x^2 - 1}{x^2 + 1} \frac{\sin{x}}{x} \,\diff{x} = \frac{\pi}{e} - \frac{\pi}{2}.