Fall 2020 - Problem 9

conformal mappings

Consider the following region in the complex plane:

Ω={x+iy|0<x< and 0<y<1x}.\Omega = \set{x + iy \st 0 < x < \infty \text{ and } 0 < y < \frac{1}{x}}.

Exhibit an explicit conformal mapping ff of Ω\Omega onto D\D.

Solution.

Let g(z)=z2g\p{z} = z^2 so that g(x+iy)=x2y2+2ixyg\p{x + iy} = x^2 - y^2 + 2ixy. Since Ω\Omega is a subset of the upper half-plane, it follows that gg is a conformal map onto its image. We claim that g(Ω)={x+iy|0<y<2}g\p{\Omega} = \set{x + iy \st 0 < y < 2}. If x+iyΩx + iy \in \Omega, then by definition,

0<xy<1    0<Img(x+iy)=2xy<2.0 < xy < 1 \implies 0 < \Im{g\p{x + iy}} = 2xy < 2.

Conversely, given x+iyx + iy with 0<y<20 < y < 2, we need to solve

a2b2=xand2ab=ya^2 - b^2 = x \quad\text{and}\quad 2ab = y

for a+ibΩa + ib \in \Omega. Observe that

x=a2b2=a2y24a2    4a44a2xy2=0    a2=4x±16x2+16y28.\begin{aligned} x = a^2 - b^2 = a^2 - \frac{y^2}{4a^2} &\implies 4a^4 - 4a^2x - y^2 = 0 \\ &\implies a^2 = \frac{4x \pm \sqrt{16x^2 + 16y^2}}{8}. \end{aligned}

Since a>0a > 0, we have

a2=x+x2+y22>0,a^2 = \frac{x + \sqrt{x^2 + y^2}}{2} > 0,

so such an a+iba + ib exists in Ω\Omega, and so gg maps Ω\Omega to a strip. Thus, h(z)=eπz2/2h\p{z} = e^{\pi z^2/2} maps Ω\Omega to the upper half-plane, so

f(z)=h(z)ih(z)+i=eπz2/2ieπz2/2+if\p{z} = \frac{h\p{z} - i}{h\p{z} + i} = \frac{e^{\pi z^2/2} - i}{e^{\pi z^2/2} + i}

is the map we want.