Fall 2020 - Problem 6

calculus, Lp spaces

Prove that the following inequality is valid for all odd C1C^1 functions f ⁣:[1,1]R\func{f}{\br{-1,1}}{\R}:

11f(x)2dx11f(x)2dx.\int_{-1}^1 \abs{f\p{x}}^2 \,\diff{x} \leq \int_{-1}^1 \abs{f'\p{x}}^2 \,\diff{x}.

By odd, we mean that f(x)=f(x)f\p{-x} = -f\p{x}.

Solution.

Notice that because ff is odd, we immediately have f(0)=0f\p{0} = 0. By the fundamental theorem of calculus and Cauchy-Schwarz,

11f(x)2dx=11(0xf(t)dt)2dx11(11χ[0,x]dt)(11f(t)2dt)dx(11xdx)(11f(t)2dt)=11f(x)2dx.\begin{aligned} \int_{-1}^1 \abs{f\p{x}}^2 \,\diff{x} &= \int_{-1}^1 \p{\int_0^x f'\p{t} \,\diff{t}}^2 \,\diff{x} \\ &\leq \int_{-1}^1 \p{\int_{-1}^1 \chi_{\br{0,x}} \,\diff{t}} \p{\int_{-1}^1 \abs{f'\p{t}}^2 \,\diff{t}} \,\diff{x} \\ &\leq \p{\int_{-1}^1 \abs{x} \,\diff{x}} \p{\int_{-1}^1 \abs{f'\p{t}}^2 \,\diff{t}} \\ &= \int_{-1}^1 \abs{f'\p{x}}^2 \,\diff{x}. \end{aligned}