Fall 2020 - Problem 5

construction, Lp spaces, measure theory

Suppose fL1([0,1])f \in L^1\p{\br{0,1}} has the property that

Ef(x)dxm(E),()\tag{$*$} \int_E \abs{f\p{x}} \,\diff{x} \leq \sqrt{m\p{E}},

for every Borel E[0,1]E \subseteq \br{0, 1}.

  1. Show that fLp([0,1])f \in L^p\p{\br{0,1}} for all 1<p<21 < p < 2.
  2. Give an example of an ff satisfying (*) that is not in L2([0,1])L^2\p{\br{0,1}}.
Solution.
  1. Notice that by (*), for any λ>0\lambda > 0, we have

    m({f>λ})1λ{f>λ}f(x)dxm({f>λ})λ    m({f>λ})1λ2.\begin{gathered} m\p{\set{\abs{f} > \lambda}} \leq \frac{1}{\lambda} \int_{\set{\abs{f} > \lambda}} \abs{f\p{x}} \,\diff{x} \leq \frac{\sqrt{m\p{\set{\abs{f} > \lambda}}}}{\lambda} \\ \implies m\p{\set{\abs{f} > \lambda}} \leq \frac{1}{\lambda^2}. \end{gathered}

    Hence, because m([0,1])=1m\p{\br{0,1}} = 1, we get

    fLpp=0pλpm({f>λ})dλ=01pλpm({f>λ})dλ+1pλpm({f>λ})dλ0pλp2dλ+1pλpdλ<,\begin{aligned} \norm{f}_{L^p}^p &= \int_0^\infty p\lambda^p m\p{\set{\abs{f} > \lambda}} \,\diff\lambda \\ &= \int_0^1 p\lambda^p m\p{\set{\abs{f} > \lambda}} \,\diff\lambda + \int_1^\infty p\lambda^p m\p{\set{\abs{f} > \lambda}} \,\diff\lambda \\ &\leq \int_0^\infty p\lambda^{p-2} \,\diff\lambda + \int_1^\infty p\lambda^p \,\diff\lambda \\ &< \infty, \end{aligned}

    since p2>1p - 2 > -1 and p>1p > 1.

  2. First, for 0<a<b10 < a < b \leq 1 and 0ha0 \leq h \leq a, we have

    babhah.\sqrt{b} - \sqrt{a} \leq \sqrt{b - h} - \sqrt{a - h}.

    Indeed, let φ(h)=bhah\phi\p{h} = \sqrt{b - h} - \sqrt{a - h}. Then

    φ(h)=12ah12bh0,\phi'\p{h} = \frac{1}{2\sqrt{a - h}} -\frac{1}{2\sqrt{b - h}} \geq 0,

    so φ\phi is minimum when h=0h = 0. Now let 0a1<b1a2<b2an<bn10 \leq a_1 < b_1 \leq a_2 < b_2 \leq \cdots \leq a_n < b_n \leq 1. Let c0=0c_0 = 0 and ck=ck1+(bkak)c_k = c_{k-1} + \p{b_k - a_k} for k1k \geq 1. Then if we let h=akck1h = a_k - c_{k-1} and apply the claim above, we get

    k=1n(ak,bk)12xdx=k=1n(bkak)k=1n(bkhakh)k=1n(ckck1)=cnc0=k=1n(bkak).\begin{aligned} \int_{\bigcup_{k=1}^n \p{a_k,b_k}} \frac{1}{2\sqrt{x}} \,\diff{x} &= \sum_{k=1}^n \p{\sqrt{b_k} - \sqrt{a_k}} \\ &\leq \sum_{k=1}^n \p{\sqrt{b_k - h} - \sqrt{a_k - h}} \\ &\leq \sum_{k=1}^n \p{\sqrt{c_k} - \sqrt{c_{k-1}}} \\ &= \sqrt{c_n} - \sqrt{c_0} \\ &= \sqrt{\sum_{k=1}^n \p{b_k - a_k}}. \end{aligned}

    By regularity of the Lebesgue measure, continuity of t\sqrt{t}, and dominated convergence, we see that for any Borel E[0,1]E \subseteq \br{0, 1}, we have

    E12xdxm(E),\int_E \frac{1}{2\sqrt{x}} \,\diff{x} \leq \sqrt{m\p{E}},

    so 12x\frac{1}{2\sqrt{x}} satisfies (*), but is certainly not in L2([0,1])L^2\p{\br{0,1}}.