Fall 2020 - Problem 2

Lp spaces, weak convergence

Show that there is a constant cRc \in \R so that

limn01f(x)cos(sin(nπx))dx=c01f(x)dx\lim_{n\to\infty} \int_0^1 f\p{x} \cos\p{\sin\p{n\pi x}} \,\diff{x} = c \int_0^1 f\p{x} \,\diff{x}

for every fL1([0,1])f \in L^1\p{\br{0,1}}. The limit is taken over those nNn \in \N.

Solution.

Notice that if gL1([0,1])g \in L^1\p{\br{0,1}}, then

01f(x)cos(sin(nπx))dx=01g(x)cos(sin(nπx))dx+01(f(x)g(x))cos(sin(nπx))dx,\int_0^1 f\p{x} \cos\p{\sin\p{n\pi x}} \,\diff{x} = \int_0^1 g\p{x} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_0^1 \p{f\p{x} - g\p{x}} \cos\p{\sin\p{n\pi x}} \,\diff{x},

and the second term is bounded by fgL1\norm{f - g}_{L^1}. Hence, it suffices to prove the claim on a dense subset of L1([0,1])L^1\p{\br{0,1}}, so we may assume that ff is a step function. By the linearity of the problem, it further suffices to assume that f=χ[a,b]f = \chi_{\br{a,b}} for some 0ab10 \leq a \leq b \leq 1. For each nn, let kn,nNk_n, \ell_n \in \N be such that

kn1naknnnnbn+1n.\frac{k_n - 1}{n} \leq a \leq \frac{k_n}{n} \leq \frac{\ell_n}{n} \leq b \leq \frac{\ell_n + 1}{n}.

Then

01χ[a,b]cos(sin(nπx))dx=abcos(sin(nπx))dx=kn/nn/ncos(sin(nπx))dx+akn/ncos(sin(nπx))dx+n/nbcos(sin(nπx))dx=j=0(nkn)/21(kn+2j)/n(kn+2(j+1))/ncos(sin(nπx))dx+kn+2(nkn)/2/nncos(sin(nπx))dx+akn/ncos(sin(nπx))dx+n/nbcos(sin(nπx))dx.\begin{aligned} \int_0^1 \chi_{\br{a,b}} \cos\p{\sin\p{n\pi x}} \,\diff{x} &= \int_a^b \cos\p{\sin\p{n\pi x}} \,\diff{x} \\ &= \int_{k_n/n}^{\ell_n/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_a^{k_n/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_{\ell_n/n}^b \cos\p{\sin\p{n\pi x}} \,\diff{x} \\ &= \sum_{j=0}^{\floor{\p{\ell_n-k_n}/2}-1} \int_{\p{k_n+2j}/n}^{\p{k_n+2\p{j+1}}/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_{k_n+2\floor{\p{\ell_n-k_n}/2}/n}^{\ell_n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_a^{k_n/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_{\ell_n/n}^b \cos\p{\sin\p{n\pi x}} \,\diff{x}. \end{aligned}

By dominated convergence, every term after the sum vanishes as nn \to \infty, so we only need to concern ourselves with the sum:

j=0(nkn)/21(kn+2j)/n(kn+2(j+1))/ncos(sin(nπx))dx=2nj=0(nkn)/2101cos(sin(2πxπkn))dx(xnxkn2j)=2nj=0(nkn)/2101cos(sin(2πx))dx(cosx is even)=2nnkn201cos(sin(2πx))dx.\begin{aligned} \sum_{j=0}^{\floor{\p{\ell_n-k_n}/2}-1} \int_{\p{k_n+2j}/n}^{\p{k_n+2\p{j+1}}/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} &= \frac{2}{n} \sum_{j=0}^{\floor{\p{\ell_n-k_n}/2}-1} \int_0^1 \cos\p{\sin\p{2\pi x - \pi k_n}} \,\diff{x} && \p{x \mapsto \frac{nx - k_n}{2} - j} \\ &= \frac{2}{n} \sum_{j=0}^{\floor{\p{\ell_n-k_n}/2}-1} \int_0^1 \cos\p{\sin\p{2\pi x}} \,\diff{x} && \p{\cos{x} \text{ is even}} \\ &= \frac{2}{n} \floor{\frac{\ell_n - k_n}{2}} \int_0^1 \cos\p{\sin\p{2\pi x}} \,\diff{x}. \end{aligned}

To complete the proof, notice that if nkn\ell_n - k_n is even, then

2nnkn2=nknnnba,\frac{2}{n} \floor{\frac{\ell_n - k_n}{2}} = \frac{\ell_n - k_n}{n} \xrightarrow{n\to\infty} b - a,

and if it's odd,

2nnkn2=nkn1nnba.\frac{2}{n} \floor{\frac{\ell_n - k_n}{2}} = \frac{\ell_n - k_n - 1}{n} \xrightarrow{n\to\infty} b - a.

Hence,

limn01χ[a,b]cos(sin(nπx))dx=(ba)01cos(sin(2πx))dx,\lim_{n\to\infty} \int_0^1 \chi_{\br{a,b}} \cos\p{\sin\p{n\pi x}} \,\diff{x} = \p{b - a} \int_0^1 \cos\p{\sin\p{2\pi x}} \,\diff{x},

so c=01cos(sin(2πx))dxc = \int_0^1 \cos\p{\sin\p{2\pi x}} \,\diff{x} works.