Solution.
Notice that if g ∈ L 1 ( [ 0 , 1 ] ) g \in L^1\p{\br{0,1}} g ∈ L 1 ( [ 0 , 1 ] ) , then
∫ 0 1 f ( x ) cos ( sin ( n π x ) ) d x = ∫ 0 1 g ( x ) cos ( sin ( n π x ) ) d x + ∫ 0 1 ( f ( x ) − g ( x ) ) cos ( sin ( n π x ) ) d x , \int_0^1 f\p{x} \cos\p{\sin\p{n\pi x}} \,\diff{x}
= \int_0^1 g\p{x} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_0^1 \p{f\p{x} - g\p{x}} \cos\p{\sin\p{n\pi x}} \,\diff{x}, ∫ 0 1 f ( x ) cos ( sin ( nπ x ) ) d x = ∫ 0 1 g ( x ) cos ( sin ( nπ x ) ) d x + ∫ 0 1 ( f ( x ) − g ( x ) ) cos ( sin ( nπ x ) ) d x ,
and the second term is bounded by ∥ f − g ∥ L 1 \norm{f - g}_{L^1} ∥ f − g ∥ L 1 . Hence, it suffices to prove the claim on a dense subset of L 1 ( [ 0 , 1 ] ) L^1\p{\br{0,1}} L 1 ( [ 0 , 1 ] ) , so we may assume that f f f is a step function. By the linearity of the problem, it further suffices to assume that f = χ [ a , b ] f = \chi_{\br{a,b}} f = χ [ a , b ] for some 0 ≤ a ≤ b ≤ 1 0 \leq a \leq b \leq 1 0 ≤ a ≤ b ≤ 1 . For each n n n , let k n , ℓ n ∈ N k_n, \ell_n \in \N k n , ℓ n ∈ N be such that
k n − 1 n ≤ a ≤ k n n ≤ ℓ n n ≤ b ≤ ℓ n + 1 n . \frac{k_n - 1}{n} \leq a \leq \frac{k_n}{n} \leq \frac{\ell_n}{n} \leq b \leq \frac{\ell_n + 1}{n}. n k n − 1 ≤ a ≤ n k n ≤ n ℓ n ≤ b ≤ n ℓ n + 1 .
Then
∫ 0 1 χ [ a , b ] cos ( sin ( n π x ) ) d x = ∫ a b cos ( sin ( n π x ) ) d x = ∫ k n / n ℓ n / n cos ( sin ( n π x ) ) d x + ∫ a k n / n cos ( sin ( n π x ) ) d x + ∫ ℓ n / n b cos ( sin ( n π x ) ) d x = ∑ j = 0 ⌊ ( ℓ n − k n ) / 2 ⌋ − 1 ∫ ( k n + 2 j ) / n ( k n + 2 ( j + 1 ) ) / n cos ( sin ( n π x ) ) d x + ∫ k n + 2 ⌊ ( ℓ n − k n ) / 2 ⌋ / n ℓ n cos ( sin ( n π x ) ) d x + ∫ a k n / n cos ( sin ( n π x ) ) d x + ∫ ℓ n / n b cos ( sin ( n π x ) ) d x . \begin{aligned}
\int_0^1 \chi_{\br{a,b}} \cos\p{\sin\p{n\pi x}} \,\diff{x}
&= \int_a^b \cos\p{\sin\p{n\pi x}} \,\diff{x} \\
&= \int_{k_n/n}^{\ell_n/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_a^{k_n/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_{\ell_n/n}^b \cos\p{\sin\p{n\pi x}} \,\diff{x} \\
&= \sum_{j=0}^{\floor{\p{\ell_n-k_n}/2}-1} \int_{\p{k_n+2j}/n}^{\p{k_n+2\p{j+1}}/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_{k_n+2\floor{\p{\ell_n-k_n}/2}/n}^{\ell_n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_a^{k_n/n} \cos\p{\sin\p{n\pi x}} \,\diff{x} + \int_{\ell_n/n}^b \cos\p{\sin\p{n\pi x}} \,\diff{x}.
\end{aligned} ∫ 0 1 χ [ a , b ] cos ( sin ( nπ x ) ) d x = ∫ a b cos ( sin ( nπ x ) ) d x = ∫ k n / n ℓ n / n cos ( sin ( nπ x ) ) d x + ∫ a k n / n cos ( sin ( nπ x ) ) d x + ∫ ℓ n / n b cos ( sin ( nπ x ) ) d x = j = 0 ∑ ⌊ ( ℓ n − k n ) /2 ⌋ − 1 ∫ ( k n + 2 j ) / n ( k n + 2 ( j + 1 ) ) / n cos ( sin ( nπ x ) ) d x + ∫ k n + 2 ⌊ ( ℓ n − k n ) /2 ⌋ / n ℓ n cos ( sin ( nπ x ) ) d x + ∫ a k n / n cos ( sin ( nπ x ) ) d x + ∫ ℓ n / n b cos ( sin ( nπ x ) ) d x .
By dominated convergence, every term after the sum vanishes as n → ∞ n \to \infty n → ∞ , so we only need to concern ourselves with the sum:
∑ j = 0 ⌊ ( ℓ n − k n ) / 2 ⌋ − 1 ∫ ( k n + 2 j ) / n ( k n + 2 ( j + 1 ) ) / n cos ( sin ( n π x ) ) d x = 2 n ∑ j = 0 ⌊ ( ℓ n − k n ) / 2 ⌋ − 1 ∫ 0 1 cos ( sin ( 2 π x − π k n ) ) d x ( x ↦ n x − k n 2 − j ) = 2 n ∑ j = 0 ⌊ ( ℓ n − k n ) / 2 ⌋ − 1 ∫ 0 1 cos ( sin ( 2 π x ) ) d x ( cos x is even ) = 2 n ⌊ ℓ n − k n 2 ⌋ ∫ 0 1 cos ( sin ( 2 π x ) ) d x . \begin{aligned}
\sum_{j=0}^{\floor{\p{\ell_n-k_n}/2}-1} \int_{\p{k_n+2j}/n}^{\p{k_n+2\p{j+1}}/n} \cos\p{\sin\p{n\pi x}} \,\diff{x}
&= \frac{2}{n} \sum_{j=0}^{\floor{\p{\ell_n-k_n}/2}-1} \int_0^1 \cos\p{\sin\p{2\pi x - \pi k_n}} \,\diff{x}
&& \p{x \mapsto \frac{nx - k_n}{2} - j} \\
&= \frac{2}{n} \sum_{j=0}^{\floor{\p{\ell_n-k_n}/2}-1} \int_0^1 \cos\p{\sin\p{2\pi x}} \,\diff{x}
&& \p{\cos{x} \text{ is even}} \\
&= \frac{2}{n} \floor{\frac{\ell_n - k_n}{2}} \int_0^1 \cos\p{\sin\p{2\pi x}} \,\diff{x}.
\end{aligned} j = 0 ∑ ⌊ ( ℓ n − k n ) /2 ⌋ − 1 ∫ ( k n + 2 j ) / n ( k n + 2 ( j + 1 ) ) / n cos ( sin ( nπ x ) ) d x = n 2 j = 0 ∑ ⌊ ( ℓ n − k n ) /2 ⌋ − 1 ∫ 0 1 cos ( sin ( 2 π x − π k n ) ) d x = n 2 j = 0 ∑ ⌊ ( ℓ n − k n ) /2 ⌋ − 1 ∫ 0 1 cos ( sin ( 2 π x ) ) d x = n 2 ⌊ 2 ℓ n − k n ⌋ ∫ 0 1 cos ( sin ( 2 π x ) ) d x . ( x ↦ 2 n x − k n − j ) ( cos x is even )
To complete the proof, notice that if ℓ n − k n \ell_n - k_n ℓ n − k n is even, then
2 n ⌊ ℓ n − k n 2 ⌋ = ℓ n − k n n → n → ∞ b − a , \frac{2}{n} \floor{\frac{\ell_n - k_n}{2}}
= \frac{\ell_n - k_n}{n} \xrightarrow{n\to\infty} b - a, n 2 ⌊ 2 ℓ n − k n ⌋ = n ℓ n − k n n → ∞ b − a ,
and if it's odd,
2 n ⌊ ℓ n − k n 2 ⌋ = ℓ n − k n − 1 n → n → ∞ b − a . \frac{2}{n} \floor{\frac{\ell_n - k_n}{2}}
= \frac{\ell_n - k_n - 1}{n} \xrightarrow{n\to\infty} b - a. n 2 ⌊ 2 ℓ n − k n ⌋ = n ℓ n − k n − 1 n → ∞ b − a .
Hence,
lim n → ∞ ∫ 0 1 χ [ a , b ] cos ( sin ( n π x ) ) d x = ( b − a ) ∫ 0 1 cos ( sin ( 2 π x ) ) d x , \lim_{n\to\infty} \int_0^1 \chi_{\br{a,b}} \cos\p{\sin\p{n\pi x}} \,\diff{x}
= \p{b - a} \int_0^1 \cos\p{\sin\p{2\pi x}} \,\diff{x}, n → ∞ lim ∫ 0 1 χ [ a , b ] cos ( sin ( nπ x ) ) d x = ( b − a ) ∫ 0 1 cos ( sin ( 2 π x ) ) d x ,
so c = ∫ 0 1 cos ( sin ( 2 π x ) ) d x c = \int_0^1 \cos\p{\sin\p{2\pi x}} \,\diff{x} c = ∫ 0 1 cos ( sin ( 2 π x ) ) d x works.