Fall 2020 - Problem 12

Cauchy's integral formula

Let Ω={zC|2<Imz<2}\Omega = \set{z \in \C \st -2 < \Im{z} < 2}. Show that there is a finite constant CC so that

f(0)2Cf(x+i)2+f(xi)2dx\abs{f\p{0}}^2 \leq C \int_{-\infty}^\infty \abs{f\p{x + i}}^2 + \abs{f\p{x - i}}^2 \,\diff{x}

for every holomorphic f ⁣:ΩD\func{f}{\Omega}{\D} for which the right-hand side is finite.

Solution.

Let R>0R > 0, and consider the rectangular contour γR\gamma_R with vertices R+iR + i, R+i-R + i, Ri-R - i, and RiR - i oriented counter-clockwise. Let γ1,γ2,γ3,γ4\gamma_1, \gamma_2, \gamma_3, \gamma_4 be the right, top, left, and bottom edges, respectively. By Cauchy's integral formula,

(f(0))2=12πiγ(f(ζ))2ζdζ.\p{f\p{0}}^2 = \frac{1}{2\pi i} \int_\gamma \frac{\p{f\p{\zeta}}^2}{\zeta} \,\diff\zeta.

We calculate the integral over the edges separately:

γ1(f(ζ))2ζdζ111R+itdtR0\abs{\int_{\gamma_1} \frac{\p{f\p{\zeta}}^2}{\zeta} \,\diff\zeta} \leq \int_{-1}^1 \frac{1}{\abs{R + it}} \,\diff{t} \xrightarrow{R\to\infty} 0

and similarly for γ3\gamma_3. On γ2\gamma_2,

γ2(f(ζ))2ζdζRR(f(x+i))2x+idxRRf(x+i)2x2+1dxf(x+i)2dx.\begin{aligned} \abs{\int_{\gamma_2} \frac{\p{f\p{\zeta}}^2}{\zeta} \,\diff\zeta} &\leq \int_{-R}^R \abs{\frac{\p{f\p{x + i}}^2}{x + i}} \,\diff{x} \\ &\leq \int_{-R}^R \frac{\abs{f\p{x + i}}^2}{\sqrt{x^2 + 1}} \,\diff{x} \\ &\leq \int_{-\infty}^\infty \abs{f\p{x + i}}^2 \,\diff{x}. \end{aligned}

and similarly for γ4\gamma_4. Hence, sending RR \to \infty, we have

f(0)212πf(x+i)2+f(xi)2dx,\begin{aligned} \abs{f\p{0}}^2 &\leq \frac{1}{2\pi} \int_{-\infty}^\infty \abs{f\p{x + i}}^2 + \abs{f\p{x - i}}^2 \,\diff{x}, \end{aligned}

which was what we wanted to show.