Spring 2019 - Problem 6

Hilbert spaces

Let H\mathcal{H} be a Hilbert space and {ξn}n\set{\xi_n}_n a sequence of vectors in H\mathcal{H} such that ξn=1\norm{\xi_n} = 1 for all nn.

  1. Show that if {ξn}n\set{\xi_n}_n converges weakly to a vector ξH\xi \in \mathcal{H} with ξ=1\norm{\xi} = 1, then limnξnξ=0\lim_{n\to\infty} \norm{\xi_n - \xi} = 0.
  2. Show that if limn,mξn+ξm=2\lim_{n,m\to\infty} \norm{\xi_n + \xi_m} = 2, then there exists a vector ξH\xi \in \mathcal{H} such that limnξnξ=0\lim_{n\to\infty} \norm{\xi_n - \xi} = 0.
Solution.
  1. Notice that

    ξnξ2=ξn2+ξ22Reξn,ξ=22Reξn,ξ,\begin{aligned} \norm{\xi_n - \xi}^2 &= \norm{\xi_n}^2 + \norm{\xi}^2 - 2\Re{\inner{\xi_n, \xi}} \\ &= 2 - 2\Re{\inner{\xi_n, \xi}}, \end{aligned}

    so by weak convergence,

    limnξnξ2=limn(22Reξn,ξ)=22ξ2=0.\begin{aligned} \lim_{n\to\infty} \,\norm{\xi_n - \xi}^2 &= \lim_{n\to\infty} \,\p{2 - 2\Re{\inner{\xi_n, \xi}}} \\ &= 2 - 2\norm{\xi}^2 \\ &= 0. \end{aligned}
  2. We have

    ξn+ξm2=2+2Reξn,ξm\norm{\xi_n + \xi_m}^2 = 2 + 2\Re{\inner{\xi_n, \xi_m}}

    and so

    ξnξm2=2(ξn+ξm22)=4ξn+ξm2n,m0.\begin{aligned} \norm{\xi_n - \xi_m}^2 &= 2 - \p{\norm{\xi_n + \xi_m}^2 - 2} \\ &= 4 - \norm{\xi_n + \xi_m}^2 \xrightarrow{n,m\to\infty} 0. \end{aligned}

    Thus, {ξn}n\set{\xi_n}_n is Cauchy, so it converges to some ξH\xi \in \mathcal{H} by completeness.