Spring 2019 - Problem 4

Hahn-Banach, operator theory

Let V\mathcal{V} be the subspace of L([0,1],μ)L^\infty\p{\br{0, 1}, \mu} (where μ\mu is the Lebesgue measure on [0,1]\br{0, 1}) defined by

V={fL([0,1],μ)|limnn[0,1/n]fdμ exists}.\mathcal{V} = \set{f \in L^\infty\p{\br{0, 1}, \mu} \st \lim_{n\to\infty} n\int_{\br{0,1/n}} f \,\diff\mu \text{ exists}}.
  1. Prove that there exists φ(L([0,1]))\phi \in \p{L^\infty\p{\br{0, 1}}}^* such that φ(f)=limnn[0,1/n]fdμ\phi\p{f} = \lim_{n\to\infty} n \int_{\br{0,1/n}} f \,\diff\mu for every fVf \in \mathcal{V}.
  2. Show that, given any φ(L([0,1]))\phi \in \p{L^\infty\p{\br{0, 1}}}^* satisfying the condition in (a) above, there exists no gL1([0,1])g \in L^1\p{\br{0,1}} such that φ(f)=fgdμ\phi\p{f} = \int fg \,\diff\mu for all fL([0,1])f \in L^\infty\p{\br{0, 1}}.
Solution.
  1. Let φ ⁣:VR\func{\phi}{\mathcal{V}}{\R} be given by

    φ(f)=limnn[0,1/n]fdμ,\phi\p{f} = \lim_{n\to\infty} n \int_{\br{0,1/n}} f \,\diff\mu,

    which is well-defined by definition of V\mathcal{V}. It's clear that this is linear, and because

    n[0,1/n]fdμfL,\abs{n \int_{\br{0,1/n}} f \,\diff\mu} \leq \norm{f}_{L^\infty},

    we see that φ1\norm{\phi} \leq 1, so φV\phi \in \mathcal{V}^*. Thus, by Hahn-Banach, φ\phi extends to a function in (L([0,1]))\p{L^\infty\p{\br{0,1}}}^*, which was what we wanted to show.

  2. Suppose otherwise, and let gL1([0,1])g \in L^1\p{\br{0,1}} represent φ\phi. Notice that if f=χ[a,b]f = \chi_{\br{a,b}} with a>0a > 0, then fL([0,1])f \in L^\infty\p{\br{0,1}} and φ(f)=0\phi\p{f} = 0. Thus, if x(0,1]x \in \poc{0, 1} is a Lebesgue point of gg, then for 0<r<x0 < r < x, we have

    0=φ(χ[xr,x+r])2r=12r[xr,x+r]gdμr0g(x).0 = \frac{\phi\p{\chi_{\br{x-r,x+r}}}}{2r} = \frac{1}{2r} \int_{\br{x - r, x + r}} g \,\diff\mu \xrightarrow{r\to0} g\p{x}.

    Thus, g=0g = 0 a.e., but this is impossible since, for example,

    1=φ(1)=gdμ=0.1 = \phi\p{1} = \int g \,\diff\mu = 0.