Spring 2019 - Problem 12

Hilbert spaces

Let H\mathcal{H} be the vector space of entire functions f ⁣:CC\func{f}{\C}{\C} such that

Cf(z)2dμ(z)<.\int_\C \abs{f\p{z}}^2 \,\diff\mu\p{z} < \infty.

Here dμ(z)=ez2dλ(z)\diff\mu\p{z} = e^{-\abs{z}^2} \,\diff\lambda\p{z}, where dλ(z)\diff\lambda\p{z} is the Lebesgue measure on C\C.

  1. Show that H\mathcal{H} is a closed subspace of L2(C,dμ)L^2\p{\C, \diff\mu}.

  2. Show that for all fHf \in \mathcal{H}, we have

    f(z)=1πCf(w)ezwdμ(w),zC.f\p{z} = \frac{1}{\pi} \int_\C f\p{w} e^{z\conj{w}} \,\diff\mu\p{w}, \quad z \in \C.

    Hint: Show that the normalized monomials

    en(z)=1(πn!)1/2zn,n=0,1,e_n\p{z} = \frac{1}{\p{\pi n!}^{1/2}} z^n, \quad n = 0, 1, \ldots

    form an orthonormal basis of H\mathcal{H}.

Solution.
  1. Suppose {fn}nH\set{f_n}_n \subseteq \mathcal{H} converges to fL2(μ)f \in L^2\p{\mu} and let K=B(0,R)K = \cl{B\p{0, R}}. By the mean value property, for any zKz \in K, we have

    fn(z)1πB(z,1)fn(w)dλ(w)1πλ(B(z,1))1/2(B(z,1)fn(w)2dμ(w))1/2λ(D)1/2πe(R+1)2supnfnL2(μ)<.\begin{aligned} \abs{f_n\p{z}} &\leq \frac{1}{\pi} \int_{B\p{z, 1}} \abs{f_n\p{w}} \,\diff\lambda\p{w} \\ &\leq \frac{1}{\pi} \lambda\p{B\p{z, 1}}^{1/2} \p{\int_{B\p{z,1}} \abs{f_n\p{w}}^2 \,\diff\mu\p{w}}^{1/2} \\ &\leq \frac{\lambda\p{\D}^{1/2}}{\pi} e^{\p{R+1}^2} \sup_n\,\norm{f_n}_{L^2\p{\mu}} \\ &< \infty. \end{aligned}

    In other words, {fn}n\set{f_n}_n is a normal family, so it admits a subsequence which converges locally uniformly. Hence, ff is a locally uniform limit of entire functions, so ff itself is entire, i.e., fHf \in \mathcal{H}, so H\mathcal{H} is closed.

  2. We follow the hint. Notice that

    enL2(μ)2=1πn!Cz2nez2dλ(z)=1πn!002πr2n+1er2dθdr=2n!0r2nrer2dr=r2ner2n!0+2nn!Cr2n1er2dr=en1L2(μ)2.\begin{aligned} \norm{e_n}_{L^2\p{\mu}}^2 &= \frac{1}{\pi n!} \int_\C z^{2n} e^{-\abs{z}^2} \,\diff\lambda\p{z} \\ &= \frac{1}{\pi n!} \int_0^\infty \int_0^{2\pi} r^{2n+1} e^{-r^2} \,\diff{\theta} \,\diff{r} \\ &= \frac{2}{n!} \int_0^\infty r^{2n} \cdot re^{-r^2} \,\diff{r} \\ &= \left. -\frac{r^{2n} e^{-r^2}}{n!} \right\rvert_0^\infty + \frac{2n}{n!} \int_\C r^{2n-1} e^{-r^2} \,\diff{r} \\ &= \norm{e_{n-1}}_{L^2\p{\mu}}^2. \end{aligned}

    When n=0n = 0,

    e0L2(μ)2=20rer2dr=er20=1,\norm{e_0}_{L^2\p{\mu}}^2 = 2 \int_0^\infty re^{-r^2} \,\diff{r} = \left. -e^{-r^2} \right\rvert_0^\infty = 1,

    so by induction, enL2(μ)=1\norm{e_n}_{L^2\p{\mu}} = 1 for all n0n \geq 0. Continuing, if nmn \neq m, we h ave

    en,emL2(μ)=1π(n!m!)1/2Czn(z)mez2dλ(z)=1π(n!m!)1/20rn+m+1er202πei(nm)θdθdr=0,\begin{aligned} \inner{e_n, e_m}_{L^2\p{\mu}} &= \frac{1}{\pi\p{n! \cdot m!}^{1/2}} \int_\C z^n \p{\conj{z}}^m e^{-\abs{z}^2} \,\diff\lambda\p{z} \\ &= \frac{1}{\pi\p{n! \cdot m!}^{1/2}} \int_0^\infty r^{n+m+1} e^{-r^2} \int_0^{2\pi} e^{i\p{n-m}\theta} \,\diff\theta \,\diff{r} \\ &= 0, \end{aligned}

    since the inner integral vanishes by orthogonality. Thus, {en}n\set{e_n}_n is indeed an orthonormal system on H\mathcal{H}. To show that it is a basis, suppose f,enL2(μ)=0\inner{f, e_n}_{L^2\p{\mu}} = 0 for all n0n \geq 0. Then if we write f(z)=n=0anznf\p{z} = \sum_{n=0}^\infty a_nz^n, we get

    0=f,enL2(μ)=1(πn!)1/2Cm=0amzm(z)ndμ(z)=1(πn!)1/2002πm=0amrn+m+1ei(mn)θer2dθdr=1(πn!)1/20m=0amrn+m+1er202πei(mn)θdθdr(absolute convergence)=2πan(πn!)1/20r2n+1er2dr=(πn!)1/2an.\begin{aligned} 0 &= \inner{f, e_n}_{L^2\p{\mu}} \\ &= \frac{1}{\p{\pi n!}^{1/2}} \int_\C \sum_{m=0}^\infty a_m z^m \p{\conj{z}}^n \,\diff\mu\p{z} \\ &= \frac{1}{\p{\pi n!}^{1/2}} \int_0^\infty \int_0^{2\pi} \sum_{m=0}^\infty a_m r^{n+m+1} e^{i\p{m-n}\theta} e^{-r^2} \,\diff{\theta} \,\diff{r} \\ &= \frac{1}{\p{\pi n!}^{1/2}} \int_0^\infty \sum_{m=0}^\infty a_m r^{n+m+1} e^{-r^2} \int_0^{2\pi} e^{i\p{m-n}\theta} \,\diff{\theta} \,\diff{r} && \p{\text{absolute convergence}} \\ &= \frac{2\pi a_n}{\p{\pi n!}^{1/2}} \int_0^\infty r^{2n+1} e^{-r^2} \,\diff{r} \\ &= \p{\pi n!}^{1/2} a_n. \end{aligned}

    Thus, if ff is orthogonal to all of the ene_n, then it is 00, so {en}n\set{e_n}_n is a basis for H\mathcal{H}. By Fubini-Tonelli, we have

    n=0Cf(w)zwnn!dμ(w)=n=0Cf(w)zwnn!dμ(w)=Cf(w)n=0zwnn!dμ(w)=Cf(w)ezwdμ(w)fL2(μ)(Cezww2dλ(w))1/2<.\begin{aligned} \sum_{n=0}^\infty \int_\C \abs{f\p{w}} \frac{\abs{z\conj{w}}^n}{n!} \,\diff\mu\p{w} &= \sum_{n=0}^\infty \int_\C \abs{f\p{w}} \frac{\abs{z\conj{w}}^n}{n!} \,\diff\mu\p{w} \\ &= \int_\C \abs{f\p{w}} \sum_{n=0}^\infty \frac{\abs{z\conj{w}}^n}{n!} \,\diff\mu\p{w} \\ &= \int_\C \abs{f\p{w}} e^{\abs{z\conj{w}}} \,\diff\mu\p{w} \\ &\leq \norm{f}_{L^2\p{\mu}} \p{\int_\C e^{\abs{z\conj{w}}-\abs{w}^2} \,\diff\lambda\p{w}}^{1/2} \\ &< \infty. \end{aligned}

    Hence, we may apply Fubini's theorem in the following to interchange the sum and integral:

    f(z)=n=0f,enen(z)=n=0znπn!Cf(w)(w)ndμ(w)=1πn=0Cf(w)(zw)nn!dμ(w)=1πCf(w)n=0(zw)nn!dμ(w)=1πCf(w)ezwdμ(w),\begin{aligned} f\p{z} &= \sum_{n=0}^\infty \inner{f, e_n} e_n\p{z} \\ &= \sum_{n=0}^\infty \frac{z^n}{\pi n!} \int_\C f\p{w} \p{\conj{w}}^n \,\diff\mu\p{w} \\ &= \frac{1}{\pi} \sum_{n=0}^\infty \int_\C f\p{w} \frac{\p{z\conj{w}}^n}{n!} \,\diff\mu\p{w} \\ &= \frac{1}{\pi} \int_\C f\p{w} \sum_{n=0}^\infty \frac{\p{z\conj{w}}^n}{n!} \,\diff\mu\p{w} \\ &= \frac{1}{\pi} \int_\C f\p{w} e^{z\conj{w}} \,\diff\mu\p{w}, \end{aligned}

    which was what we wanted to show.