Suppose { f n } n ⊆ H \set{f_n}_n \subseteq \mathcal{H} { f n } n ⊆ H converges to f ∈ L 2 ( μ ) f \in L^2\p{\mu} f ∈ L 2 ( μ ) and let K = B ( 0 , R ) ‾ K = \cl{B\p{0, R}} K = B ( 0 , R ) . By the mean value property, for any z ∈ K z \in K z ∈ K , we have
∣ f n ( z ) ∣ ≤ 1 π ∫ B ( z , 1 ) ∣ f n ( w ) ∣ d λ ( w ) ≤ 1 π λ ( B ( z , 1 ) ) 1 / 2 ( ∫ B ( z , 1 ) ∣ f n ( w ) ∣ 2 d μ ( w ) ) 1 / 2 ≤ λ ( D ) 1 / 2 π e ( R + 1 ) 2 sup n ∥ f n ∥ L 2 ( μ ) < ∞ . \begin{aligned}
\abs{f_n\p{z}}
&\leq \frac{1}{\pi} \int_{B\p{z, 1}} \abs{f_n\p{w}} \,\diff\lambda\p{w} \\
&\leq \frac{1}{\pi} \lambda\p{B\p{z, 1}}^{1/2} \p{\int_{B\p{z,1}} \abs{f_n\p{w}}^2 \,\diff\mu\p{w}}^{1/2} \\
&\leq \frac{\lambda\p{\D}^{1/2}}{\pi} e^{\p{R+1}^2} \sup_n\,\norm{f_n}_{L^2\p{\mu}} \\
&< \infty.
\end{aligned} ∣ f n ( z ) ∣ ≤ π 1 ∫ B ( z , 1 ) ∣ f n ( w ) ∣ d λ ( w ) ≤ π 1 λ ( B ( z , 1 ) ) 1/2 ( ∫ B ( z , 1 ) ∣ f n ( w ) ∣ 2 d μ ( w ) ) 1/2 ≤ π λ ( D ) 1/2 e ( R + 1 ) 2 n sup ∥ f n ∥ L 2 ( μ ) < ∞.
In other words, { f n } n \set{f_n}_n { f n } n is a normal family, so it admits a subsequence which converges locally uniformly. Hence, f f f is a locally uniform limit of entire functions, so f f f itself is entire, i.e., f ∈ H f \in \mathcal{H} f ∈ H , so H \mathcal{H} H is closed.
We follow the hint. Notice that
∥ e n ∥ L 2 ( μ ) 2 = 1 π n ! ∫ C z 2 n e − ∣ z ∣ 2 d λ ( z ) = 1 π n ! ∫ 0 ∞ ∫ 0 2 π r 2 n + 1 e − r 2 d θ d r = 2 n ! ∫ 0 ∞ r 2 n ⋅ r e − r 2 d r = − r 2 n e − r 2 n ! ∣ 0 ∞ + 2 n n ! ∫ C r 2 n − 1 e − r 2 d r = ∥ e n − 1 ∥ L 2 ( μ ) 2 . \begin{aligned}
\norm{e_n}_{L^2\p{\mu}}^2
&= \frac{1}{\pi n!} \int_\C z^{2n} e^{-\abs{z}^2} \,\diff\lambda\p{z} \\
&= \frac{1}{\pi n!} \int_0^\infty \int_0^{2\pi} r^{2n+1} e^{-r^2} \,\diff{\theta} \,\diff{r} \\
&= \frac{2}{n!} \int_0^\infty r^{2n} \cdot re^{-r^2} \,\diff{r} \\
&= \left. -\frac{r^{2n} e^{-r^2}}{n!} \right\rvert_0^\infty + \frac{2n}{n!} \int_\C r^{2n-1} e^{-r^2} \,\diff{r} \\
&= \norm{e_{n-1}}_{L^2\p{\mu}}^2.
\end{aligned} ∥ e n ∥ L 2 ( μ ) 2 = πn ! 1 ∫ C z 2 n e − ∣ z ∣ 2 d λ ( z ) = πn ! 1 ∫ 0 ∞ ∫ 0 2 π r 2 n + 1 e − r 2 d θ d r = n ! 2 ∫ 0 ∞ r 2 n ⋅ r e − r 2 d r = − n ! r 2 n e − r 2 ∣ ∣ 0 ∞ + n ! 2 n ∫ C r 2 n − 1 e − r 2 d r = ∥ e n − 1 ∥ L 2 ( μ ) 2 .
When n = 0 n = 0 n = 0 ,
∥ e 0 ∥ L 2 ( μ ) 2 = 2 ∫ 0 ∞ r e − r 2 d r = − e − r 2 ∣ 0 ∞ = 1 , \norm{e_0}_{L^2\p{\mu}}^2
= 2 \int_0^\infty re^{-r^2} \,\diff{r}
= \left. -e^{-r^2} \right\rvert_0^\infty
= 1, ∥ e 0 ∥ L 2 ( μ ) 2 = 2 ∫ 0 ∞ r e − r 2 d r = − e − r 2 ∣ ∣ 0 ∞ = 1 ,
so by induction, ∥ e n ∥ L 2 ( μ ) = 1 \norm{e_n}_{L^2\p{\mu}} = 1 ∥ e n ∥ L 2 ( μ ) = 1 for all n ≥ 0 n \geq 0 n ≥ 0 . Continuing, if n ≠ m n \neq m n = m , we h ave
⟨ e n , e m ⟩ L 2 ( μ ) = 1 π ( n ! ⋅ m ! ) 1 / 2 ∫ C z n ( z ‾ ) m e − ∣ z ∣ 2 d λ ( z ) = 1 π ( n ! ⋅ m ! ) 1 / 2 ∫ 0 ∞ r n + m + 1 e − r 2 ∫ 0 2 π e i ( n − m ) θ d θ d r = 0 , \begin{aligned}
\inner{e_n, e_m}_{L^2\p{\mu}}
&= \frac{1}{\pi\p{n! \cdot m!}^{1/2}} \int_\C z^n \p{\conj{z}}^m e^{-\abs{z}^2} \,\diff\lambda\p{z} \\
&= \frac{1}{\pi\p{n! \cdot m!}^{1/2}} \int_0^\infty r^{n+m+1} e^{-r^2} \int_0^{2\pi} e^{i\p{n-m}\theta} \,\diff\theta \,\diff{r} \\
&= 0,
\end{aligned} ⟨ e n , e m ⟩ L 2 ( μ ) = π ( n ! ⋅ m ! ) 1/2 1 ∫ C z n ( z ) m e − ∣ z ∣ 2 d λ ( z ) = π ( n ! ⋅ m ! ) 1/2 1 ∫ 0 ∞ r n + m + 1 e − r 2 ∫ 0 2 π e i ( n − m ) θ d θ d r = 0 ,
since the inner integral vanishes by orthogonality. Thus, { e n } n \set{e_n}_n { e n } n is indeed an orthonormal system on H \mathcal{H} H . To show that it is a basis, suppose ⟨ f , e n ⟩ L 2 ( μ ) = 0 \inner{f, e_n}_{L^2\p{\mu}} = 0 ⟨ f , e n ⟩ L 2 ( μ ) = 0 for all n ≥ 0 n \geq 0 n ≥ 0 . Then if we write f ( z ) = ∑ n = 0 ∞ a n z n f\p{z} = \sum_{n=0}^\infty a_nz^n f ( z ) = ∑ n = 0 ∞ a n z n , we get
0 = ⟨ f , e n ⟩ L 2 ( μ ) = 1 ( π n ! ) 1 / 2 ∫ C ∑ m = 0 ∞ a m z m ( z ‾ ) n d μ ( z ) = 1 ( π n ! ) 1 / 2 ∫ 0 ∞ ∫ 0 2 π ∑ m = 0 ∞ a m r n + m + 1 e i ( m − n ) θ e − r 2 d θ d r = 1 ( π n ! ) 1 / 2 ∫ 0 ∞ ∑ m = 0 ∞ a m r n + m + 1 e − r 2 ∫ 0 2 π e i ( m − n ) θ d θ d r ( absolute convergence ) = 2 π a n ( π n ! ) 1 / 2 ∫ 0 ∞ r 2 n + 1 e − r 2 d r = ( π n ! ) 1 / 2 a n . \begin{aligned}
0
&= \inner{f, e_n}_{L^2\p{\mu}} \\
&= \frac{1}{\p{\pi n!}^{1/2}} \int_\C \sum_{m=0}^\infty a_m z^m \p{\conj{z}}^n \,\diff\mu\p{z} \\
&= \frac{1}{\p{\pi n!}^{1/2}} \int_0^\infty \int_0^{2\pi} \sum_{m=0}^\infty a_m r^{n+m+1} e^{i\p{m-n}\theta} e^{-r^2} \,\diff{\theta} \,\diff{r} \\
&= \frac{1}{\p{\pi n!}^{1/2}} \int_0^\infty \sum_{m=0}^\infty a_m r^{n+m+1} e^{-r^2} \int_0^{2\pi} e^{i\p{m-n}\theta} \,\diff{\theta} \,\diff{r}
&& \p{\text{absolute convergence}} \\
&= \frac{2\pi a_n}{\p{\pi n!}^{1/2}} \int_0^\infty r^{2n+1} e^{-r^2} \,\diff{r} \\
&= \p{\pi n!}^{1/2} a_n.
\end{aligned} 0 = ⟨ f , e n ⟩ L 2 ( μ ) = ( πn ! ) 1/2 1 ∫ C m = 0 ∑ ∞ a m z m ( z ) n d μ ( z ) = ( πn ! ) 1/2 1 ∫ 0 ∞ ∫ 0 2 π m = 0 ∑ ∞ a m r n + m + 1 e i ( m − n ) θ e − r 2 d θ d r = ( πn ! ) 1/2 1 ∫ 0 ∞ m = 0 ∑ ∞ a m r n + m + 1 e − r 2 ∫ 0 2 π e i ( m − n ) θ d θ d r = ( πn ! ) 1/2 2 π a n ∫ 0 ∞ r 2 n + 1 e − r 2 d r = ( πn ! ) 1/2 a n . ( absolute convergence )
Thus, if f f f is orthogonal to all of the e n e_n e n , then it is 0 0 0 , so { e n } n \set{e_n}_n { e n } n is a basis for H \mathcal{H} H . By Fubini-Tonelli, we have
∑ n = 0 ∞ ∫ C ∣ f ( w ) ∣ ∣ z w ‾ ∣ n n ! d μ ( w ) = ∑ n = 0 ∞ ∫ C ∣ f ( w ) ∣ ∣ z w ‾ ∣ n n ! d μ ( w ) = ∫ C ∣ f ( w ) ∣ ∑ n = 0 ∞ ∣ z w ‾ ∣ n n ! d μ ( w ) = ∫ C ∣ f ( w ) ∣ e ∣ z w ‾ ∣ d μ ( w ) ≤ ∥ f ∥ L 2 ( μ ) ( ∫ C e ∣ z w ‾ ∣ − ∣ w ∣ 2 d λ ( w ) ) 1 / 2 < ∞ . \begin{aligned}
\sum_{n=0}^\infty \int_\C \abs{f\p{w}} \frac{\abs{z\conj{w}}^n}{n!} \,\diff\mu\p{w}
&= \sum_{n=0}^\infty \int_\C \abs{f\p{w}} \frac{\abs{z\conj{w}}^n}{n!} \,\diff\mu\p{w} \\
&= \int_\C \abs{f\p{w}} \sum_{n=0}^\infty \frac{\abs{z\conj{w}}^n}{n!} \,\diff\mu\p{w} \\
&= \int_\C \abs{f\p{w}} e^{\abs{z\conj{w}}} \,\diff\mu\p{w} \\
&\leq \norm{f}_{L^2\p{\mu}} \p{\int_\C e^{\abs{z\conj{w}}-\abs{w}^2} \,\diff\lambda\p{w}}^{1/2} \\
&< \infty.
\end{aligned} n = 0 ∑ ∞ ∫ C ∣ f ( w ) ∣ n ! ∣ z w ∣ n d μ ( w ) = n = 0 ∑ ∞ ∫ C ∣ f ( w ) ∣ n ! ∣ z w ∣ n d μ ( w ) = ∫ C ∣ f ( w ) ∣ n = 0 ∑ ∞ n ! ∣ z w ∣ n d μ ( w ) = ∫ C ∣ f ( w ) ∣ e ∣ z w ∣ d μ ( w ) ≤ ∥ f ∥ L 2 ( μ ) ( ∫ C e ∣ z w ∣ − ∣ w ∣ 2 d λ ( w ) ) 1/2 < ∞.
Hence, we may apply Fubini's theorem in the following to interchange the sum and integral:
f ( z ) = ∑ n = 0 ∞ ⟨ f , e n ⟩ e n ( z ) = ∑ n = 0 ∞ z n π n ! ∫ C f ( w ) ( w ‾ ) n d μ ( w ) = 1 π ∑ n = 0 ∞ ∫ C f ( w ) ( z w ‾ ) n n ! d μ ( w ) = 1 π ∫ C f ( w ) ∑ n = 0 ∞ ( z w ‾ ) n n ! d μ ( w ) = 1 π ∫ C f ( w ) e z w ‾ d μ ( w ) , \begin{aligned}
f\p{z}
&= \sum_{n=0}^\infty \inner{f, e_n} e_n\p{z} \\
&= \sum_{n=0}^\infty \frac{z^n}{\pi n!} \int_\C f\p{w} \p{\conj{w}}^n \,\diff\mu\p{w} \\
&= \frac{1}{\pi} \sum_{n=0}^\infty \int_\C f\p{w} \frac{\p{z\conj{w}}^n}{n!} \,\diff\mu\p{w} \\
&= \frac{1}{\pi} \int_\C f\p{w} \sum_{n=0}^\infty \frac{\p{z\conj{w}}^n}{n!} \,\diff\mu\p{w} \\
&= \frac{1}{\pi} \int_\C f\p{w} e^{z\conj{w}} \,\diff\mu\p{w},
\end{aligned} f ( z ) = n = 0 ∑ ∞ ⟨ f , e n ⟩ e n ( z ) = n = 0 ∑ ∞ πn ! z n ∫ C f ( w ) ( w ) n d μ ( w ) = π 1 n = 0 ∑ ∞ ∫ C f ( w ) n ! ( z w ) n d μ ( w ) = π 1 ∫ C f ( w ) n = 0 ∑ ∞ n ! ( z w ) n d μ ( w ) = π 1 ∫ C f ( w ) e z w d μ ( w ) ,
which was what we wanted to show.