Fall 2019 - Problem 5

Hilbert spaces

Prove the following claim: Let H\mathcal{H} be a Hilbert space with the scalar product if xx and yy denoted by x,y\inner{x, y} and let A,B ⁣:HH\func{A,B}{\mathcal{H}}{\mathcal{H}} be (everywhere-defined) linear operators with

x,yH,Bx,y=x,Ay.\forall x, y \in \mathcal{H}, \quad \inner{Bx, y} = \inner{x, Ay}.

Then AA and BB are both bounded (and thus continuous).

Solution.

Observe that for any yHy \in \mathcal{H},

supx=1Bx,y=supx=1x,Aysupx=1xAy=Ay.\sup_{\norm{x} = 1} \,\abs{\inner{Bx, y}} = \sup_{\norm{x} = 1} \,\abs{\inner{x, Ay}} \leq \sup_{\norm{x} = 1} \,\norm{x}\norm{Ay} = \norm{Ay}.

Hence, by the uniform boundedness principle,

C=supx=1Bx,<.C = \sup_{\norm{x} = 1} \norm{\inner{Bx, \:\cdot\:}} < \infty.

It follows that

Bx2=Bx,BxCBx    supx=1BxC<,\norm{Bx}^2 = \abs{\inner{Bx, Bx}} \leq C\norm{Bx} \implies \sup_{\norm{x} = 1} \,\norm{Bx} \leq C < \infty,

so by definition, B<\norm{B} < \infty. For AA, observe that Ay,x=y,Bx\conj{\inner{Ay, x}} = \conj{\inner{y, Bx}}, so by symmetry, we see that AA is also bounded.