Fall 2019 - Problem 3

Lp spaces

Consider a measure space (X,X)\p{X, \mathcal{X}} with σ\sigma-finite measure μ\mu and let p(1,)p \in \p{1, \infty}. Let Lp,L^{p,\infty} be the set of measurable f ⁣:XR\func{f}{X}{\R} with [f]p=supt>0tμ({f>t})1/p\br{f}_p = \sup_{t>0} t\mu\p{\set{\abs{f} > t}}^{1/p} finite. Let

fp,=supμ(E)(0,)EX1μ(E)11pEfdμ.\norm{f}_{p,\infty} = \sup_{\stackrel{E \in \mathcal{X}}{\mu\p{E} \in \p{0,\infty}}} \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_E \abs{f} \,\diff\mu.

Prove that there exist c1,c2(0,)c_1, c_2 \in \p{0, \infty}---which may depend on pp and μ\mu---such that

fLp,,c1[f]pfp,c2[f]p.\forall f \in L^{p,\infty}, \quad c_1\br{f}_p \leq \norm{f}_{p,\infty} \leq c_2\br{f}_p.
Solution.

If f=0f = 0, then the inequalities hold trivially. Otherwise, there exists some t>0t > 0 such that μ({f>t})>0\mu\p{\set{\abs{f} > t}} > 0. Then

1μ({f>t})11p{f>t}fdμtμ({f>t})μ({f>t})11p=tμ({f>t})1/p.\begin{aligned} \frac{1}{\mu\p{\set{\abs{f} > t}}^{1-\frac{1}{p}}} \int_{\set{\abs{f} > t}} \abs{f} \,\diff\mu &\geq \frac{t\mu\p{\set{\abs{f} > t}}}{\mu\p{\set{\abs{f} > t}}^{1-\frac{1}{p}}} \\ &= t\mu\p{\set{\abs{f} > t}}^{1/p}. \end{aligned}

Taking the supremum over tt and then over positive μ\mu-measure sets, we see that

[f]pfp,.\br{f}_p \leq \norm{f}_{p,\infty}.

Conversely, let EXE \in \mathcal{X} be with μ(E)(0,)\mu\p{E} \in \p{0, \infty}. Then

1μ(E)11pEfdμ=1μ(E)11p0μ({xEf(x)>t})dt1μ(E)11p0min{μ(E),μ({f>t})}dt1μ(E)11p0min{μ(E),[f]pptp}dt=1μ(E)11p({[f]pptpμ(E)}[f]pptpdt+{[f]pptpμ(E)}μ(E)dt)=1μ(E)11p(λ[f]pptpdt+0λμ(E)dt)(λ=[f]pμ(E)1/p)=1μ(E)11p(λ1p[f]ppp1+λμ(E))=1μ(E)11p(μ(E)11p[f]pp1+μ(E)11p[f]p)=(pp1)[f]p,\begin{aligned} \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_E \abs{f} \,\diff\mu &= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_0^\infty \mu\p{\set{x \in E \mid \abs{f\p{x} > t}}} \,\diff{t} \\ &\leq \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_0^\infty \min\,\set{\mu\p{E}, \mu\p{\set{\abs{f} > t}}} \,\diff{t} \\ &\leq \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_0^\infty \min\,\set{\mu\p{E}, \frac{\br{f}_p^p}{t^p}} \,\diff{t} \\ &= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \p{\int_{\set{\frac{\br{f}_p^p}{t^p} \leq \mu\p{E}}} \frac{\br{f}_p^p}{t^p} \,\diff{t} + \int_{\set{\frac{\br{f}_p^p}{t^p} \geq \mu\p{E}}} \mu\p{E} \,\diff{t}} \\ &= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \p{\int_\lambda^\infty \frac{\br{f}_p^p}{t^p} \,\diff{t} + \int_0^\lambda \mu\p{E} \,\diff{t}} && \p{\lambda = \frac{\br{f}_p}{\mu\p{E}^{1/p}}} \\ &= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \p{\frac{\lambda^{1-p}\br{f}_p^p}{p - 1} + \lambda\mu\p{E}} \\ &= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \p{\frac{\mu\p{E}^{1-\frac{1}{p}}\br{f}_p}{p - 1} + \mu\p{E}^{1-\frac{1}{p}}\br{f}_p} \\ &= \p{\frac{p}{p - 1}} \br{f}_p, \end{aligned}

which completes the proof.