Lp spaces
Consider a measure space ( X , X ) \p{X, \mathcal{X}} ( X , X ) with σ \sigma σ -finite measure μ \mu μ and let p ∈ ( 1 , ∞ ) p \in \p{1, \infty} p ∈ ( 1 , ∞ ) . Let L p , ∞ L^{p,\infty} L p , ∞ be the set of measurable f : X → R \func{f}{X}{\R} f : X → R with [ f ] p = sup t > 0 t μ ( { ∣ f ∣ > t } ) 1 / p \br{f}_p = \sup_{t>0} t\mu\p{\set{\abs{f} > t}}^{1/p} [ f ] p = sup t > 0 t μ ( { ∣ f ∣ > t } ) 1/ p finite. Let
∥ f ∥ p , ∞ = sup μ ( E ) ∈ ( 0 , ∞ ) E ∈ X 1 μ ( E ) 1 − 1 p ∫ E ∣ f ∣ d μ . \norm{f}_{p,\infty}
= \sup_{\stackrel{E \in \mathcal{X}}{\mu\p{E} \in \p{0,\infty}}} \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_E \abs{f} \,\diff\mu. ∥ f ∥ p , ∞ = μ ( E ) ∈ ( 0 , ∞ ) E ∈ X sup μ ( E ) 1 − p 1 1 ∫ E ∣ f ∣ d μ .
Prove that there exist c 1 , c 2 ∈ ( 0 , ∞ ) c_1, c_2 \in \p{0, \infty} c 1 , c 2 ∈ ( 0 , ∞ ) ---which may depend on p p p and μ \mu μ ---such that
∀ f ∈ L p , ∞ , c 1 [ f ] p ≤ ∥ f ∥ p , ∞ ≤ c 2 [ f ] p . \forall f \in L^{p,\infty},
\quad c_1\br{f}_p \leq \norm{f}_{p,\infty} \leq c_2\br{f}_p. ∀ f ∈ L p , ∞ , c 1 [ f ] p ≤ ∥ f ∥ p , ∞ ≤ c 2 [ f ] p .
Solution.
If f = 0 f = 0 f = 0 , then the inequalities hold trivially. Otherwise, there exists some t > 0 t > 0 t > 0 such that μ ( { ∣ f ∣ > t } ) > 0 \mu\p{\set{\abs{f} > t}} > 0 μ ( { ∣ f ∣ > t } ) > 0 . Then
1 μ ( { ∣ f ∣ > t } ) 1 − 1 p ∫ { ∣ f ∣ > t } ∣ f ∣ d μ ≥ t μ ( { ∣ f ∣ > t } ) μ ( { ∣ f ∣ > t } ) 1 − 1 p = t μ ( { ∣ f ∣ > t } ) 1 / p . \begin{aligned}
\frac{1}{\mu\p{\set{\abs{f} > t}}^{1-\frac{1}{p}}} \int_{\set{\abs{f} > t}} \abs{f} \,\diff\mu
&\geq \frac{t\mu\p{\set{\abs{f} > t}}}{\mu\p{\set{\abs{f} > t}}^{1-\frac{1}{p}}} \\
&= t\mu\p{\set{\abs{f} > t}}^{1/p}.
\end{aligned} μ ( { ∣ f ∣ > t } ) 1 − p 1 1 ∫ { ∣ f ∣ > t } ∣ f ∣ d μ ≥ μ ( { ∣ f ∣ > t } ) 1 − p 1 t μ ( { ∣ f ∣ > t } ) = t μ ( { ∣ f ∣ > t } ) 1/ p .
Taking the supremum over t t t and then over positive μ \mu μ -measure sets, we see that
[ f ] p ≤ ∥ f ∥ p , ∞ . \br{f}_p
\leq \norm{f}_{p,\infty}. [ f ] p ≤ ∥ f ∥ p , ∞ .
Conversely, let E ∈ X E \in \mathcal{X} E ∈ X be with μ ( E ) ∈ ( 0 , ∞ ) \mu\p{E} \in \p{0, \infty} μ ( E ) ∈ ( 0 , ∞ ) . Then
1 μ ( E ) 1 − 1 p ∫ E ∣ f ∣ d μ = 1 μ ( E ) 1 − 1 p ∫ 0 ∞ μ ( { x ∈ E ∣ ∣ f ( x ) > t ∣ } ) d t ≤ 1 μ ( E ) 1 − 1 p ∫ 0 ∞ min { μ ( E ) , μ ( { ∣ f ∣ > t } ) } d t ≤ 1 μ ( E ) 1 − 1 p ∫ 0 ∞ min { μ ( E ) , [ f ] p p t p } d t = 1 μ ( E ) 1 − 1 p ( ∫ { [ f ] p p t p ≤ μ ( E ) } [ f ] p p t p d t + ∫ { [ f ] p p t p ≥ μ ( E ) } μ ( E ) d t ) = 1 μ ( E ) 1 − 1 p ( ∫ λ ∞ [ f ] p p t p d t + ∫ 0 λ μ ( E ) d t ) ( λ = [ f ] p μ ( E ) 1 / p ) = 1 μ ( E ) 1 − 1 p ( λ 1 − p [ f ] p p p − 1 + λ μ ( E ) ) = 1 μ ( E ) 1 − 1 p ( μ ( E ) 1 − 1 p [ f ] p p − 1 + μ ( E ) 1 − 1 p [ f ] p ) = ( p p − 1 ) [ f ] p , \begin{aligned}
\frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_E \abs{f} \,\diff\mu
&= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_0^\infty \mu\p{\set{x \in E \mid \abs{f\p{x} > t}}} \,\diff{t} \\
&\leq \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_0^\infty \min\,\set{\mu\p{E}, \mu\p{\set{\abs{f} > t}}} \,\diff{t} \\
&\leq \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \int_0^\infty \min\,\set{\mu\p{E}, \frac{\br{f}_p^p}{t^p}} \,\diff{t} \\
&= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \p{\int_{\set{\frac{\br{f}_p^p}{t^p} \leq \mu\p{E}}} \frac{\br{f}_p^p}{t^p} \,\diff{t} + \int_{\set{\frac{\br{f}_p^p}{t^p} \geq \mu\p{E}}} \mu\p{E} \,\diff{t}} \\
&= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \p{\int_\lambda^\infty \frac{\br{f}_p^p}{t^p} \,\diff{t} + \int_0^\lambda \mu\p{E} \,\diff{t}}
&& \p{\lambda = \frac{\br{f}_p}{\mu\p{E}^{1/p}}} \\
&= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \p{\frac{\lambda^{1-p}\br{f}_p^p}{p - 1} + \lambda\mu\p{E}} \\
&= \frac{1}{\mu\p{E}^{1-\frac{1}{p}}} \p{\frac{\mu\p{E}^{1-\frac{1}{p}}\br{f}_p}{p - 1} + \mu\p{E}^{1-\frac{1}{p}}\br{f}_p} \\
&= \p{\frac{p}{p - 1}} \br{f}_p,
\end{aligned} μ ( E ) 1 − p 1 1 ∫ E ∣ f ∣ d μ = μ ( E ) 1 − p 1 1 ∫ 0 ∞ μ ( { x ∈ E ∣ ∣ f ( x ) > t ∣ } ) d t ≤ μ ( E ) 1 − p 1 1 ∫ 0 ∞ min { μ ( E ) , μ ( { ∣ f ∣ > t } ) } d t ≤ μ ( E ) 1 − p 1 1 ∫ 0 ∞ min { μ ( E ) , t p [ f ] p p } d t = μ ( E ) 1 − p 1 1 ⎝ ⎛ ∫ { t p [ f ] p p ≤ μ ( E ) } t p [ f ] p p d t + ∫ { t p [ f ] p p ≥ μ ( E ) } μ ( E ) d t ⎠ ⎞ = μ ( E ) 1 − p 1 1 ( ∫ λ ∞ t p [ f ] p p d t + ∫ 0 λ μ ( E ) d t ) = μ ( E ) 1 − p 1 1 ( p − 1 λ 1 − p [ f ] p p + λ μ ( E ) ) = μ ( E ) 1 − p 1 1 ( p − 1 μ ( E ) 1 − p 1 [ f ] p + μ ( E ) 1 − p 1 [ f ] p ) = ( p − 1 p ) [ f ] p , ( λ = μ ( E ) 1/ p [ f ] p )
which completes the proof.