Spring 2018 - Problem 9

analytic continuation

Consider the formal product

n=1(1+1n)z(1zn).\prod_{n=1}^\infty \p{1 + \frac{1}{n}}^z \p{1 - \frac{z}{n}}.
  1. Show that the product converges for any z(,0)z \in \p{-\infty, 0}.
  2. Show that the resulting function extends from the interval to an entire function of zCz \in \C.
Solution.
  1. It suffices to show that

    n=1[1(1+1n)z(1zn)]\sum_{n=1}^\infty \br{1 - \p{1 + \frac{1}{n}}^z \p{1 - \frac{z}{n}}}

    converges. First, by Taylor expansion about x=0x = 0,

    (1+x)z=1+zx+O(x2).\p{1 + x}^z = 1 + zx + O\p{x^2}.

    Thus,

    [1(1+1n)z(1zn)]=n(nz)(1+1n)zn=1n(n(nz)(1+zn+O(1n2)))=1n(z2n+(zn)O(z2n2))=O(1n2),\begin{aligned} \br{1 - \p{1 + \frac{1}{n}}^z \p{1 - \frac{z}{n}}} &= \frac{n - \p{n - z}\p{1 + \frac{1}{n}}^z}{n} \\ &= \frac{1}{n}\p{n - \p{n - z}\p{1 + \frac{z}{n} + O\p{\frac{1}{n^2}}}} \\ &= \frac{1}{n} \p{\frac{z^2}{n} + \p{z - n}O\p{\frac{z^2}{n^2}}} \\ &= O\p{\frac{1}{n^2}}, \end{aligned}

    so the series converges and hence the product converges as well.

  2. Let KK be compact. From the calculation above, we see that the corresponding sum to the product converges uniformly on KK, so eventually all terms lie in the disk B(1,12)B\p{1, \frac{1}{2}}. If fn(z)=(1+1n)z(1zn)f_n\p{z} = \p{1 + \frac{1}{n}}^z \p{1 - \frac{z}{n}}, then

    log(n=NMfn(z))=n=NMlogfn(z)=n=NMlog(1+(fn(z)1))=n=NMO(fn(z)1)    n=NMfn(z)=exp(n=NMO(fn(z)1))=exp(n=NMO(1n2)),\begin{gathered} \log\p{\prod_{n=N}^M f_n\p{z}} = \sum_{n=N}^M \log{f_n\p{z}} = \sum_{n=N}^M \log\p{1 + \p{f_n\p{z} - 1}} = \sum_{n=N}^M O\p{f_n\p{z} - 1} \\ \implies \prod_{n=N}^M f_n\p{z} = \exp\p{\sum_{n=N}^M O\p{\abs{f_n\p{z} - 1}}} = \exp\p{\sum_{n=N}^M O\p{\frac{1}{n^2}}}, \end{gathered}

    where the big-O depends on KK. In other words, the product also converges uniformly on KK, and so the formal product extends to an entire function.