Solution.
Fix z0∈C and let z∈B(z0,1). Observe that because F is holomorphic in the first variable,
F(z,z)=2πi1∫∂B(z0,1)ζ−zF(ζ,z)dζ,
by Cauchy's integral formula. Since for each ζ, z↦F(ζ,z) is still holomorphic, we get
F(ζ,z)=2πi1∫∂B(z0,2)w−zF(ζ,w)dw.
Combining these, we get
F(z,z)=(2πi)21∫∂B(z0,2)∫∂B(z0,3)(ζ−z)(w−z)F(ζ,w)dwdζ=(2πi)21∫∂B(z0,2)∫∂B(z0,3)ζ−wF(ζ,w)(w−z1−ζ−z1)dwdζ=(2πi)21∫∂B(z0,2)∫∂B(z0,3)ζ−wF(ζ,w)n=0∑∞[w1(w−z0z−z0)n−ζ−z01(ζ−z0z−z0)n]dwdζ=(2πi)21∫∂B(z0,2)∫∂B(z0,3)ζ−wF(ζ,w)n=0∑∞((w−z0)n+11−(ζ−z0)n+11)(z−z0)ndwdζ.
If we can justify switching the sum and integral, then we are done. Observe that the sum converges uniformly, since ∣w−z0∣,∣ζ−z0∣≥1. Also, ∣ζ−w∣≥1, by construction, and on ∂B(z0,3), we see that w↦F(ζ,w) is bounded, so we may apply Fubini's theorem to swap the inner sum and integral. By the same argument, since ζ↦F(ζ,w) is a continuous hence bounded function on ∂B(z0,2), so we may swap again. Thus,
F(z,z)=n=0∑∞((2πi)21∫∂B(z0,2)∫∂B(z0,3)ζ−wF(ζ,w)((w−z0)n+11−(ζ−z0)n+11)dwdζ)(z−z0)n,
so F is holomorphic.