Spring 2018 - Problem 7

Cauchy's integral formula

Let F ⁣:C×CC\func{F}{\C \times \C}{\C} be (jointly) continuous and holomorphic in each variable separately. Show that zF(z,z)z \mapsto F\p{z, z} is holomorphic.

Solution.

Fix z0Cz_0 \in \C and let zB(z0,1)z \in B\p{z_0, 1}. Observe that because FF is holomorphic in the first variable,

F(z,z)=12πiB(z0,1)F(ζ,z)ζzdζ,F\p{z, z} = \frac{1}{2\pi i} \int_{\partial B\p{z_0, 1}} \frac{F\p{\zeta, z}}{\zeta - z} \,\diff\zeta,

by Cauchy's integral formula. Since for each ζ\zeta, zF(ζ,z)z \mapsto F\p{\zeta, z} is still holomorphic, we get

F(ζ,z)=12πiB(z0,2)F(ζ,w)wzdw.F\p{\zeta, z} = \frac{1}{2\pi i} \int_{\partial B\p{z_0, 2}} \frac{F\p{\zeta, w}}{w - z} \,\diff{w}.

Combining these, we get

F(z,z)=1(2πi)2B(z0,2)B(z0,3)F(ζ,w)(ζz)(wz)dwdζ=1(2πi)2B(z0,2)B(z0,3)F(ζ,w)ζw(1wz1ζz)dwdζ=1(2πi)2B(z0,2)B(z0,3)F(ζ,w)ζwn=0[1w(zz0wz0)n1ζz0(zz0ζz0)n]dwdζ=1(2πi)2B(z0,2)B(z0,3)F(ζ,w)ζwn=0(1(wz0)n+11(ζz0)n+1)(zz0)ndwdζ.\begin{aligned} F\p{z, z} &= \frac{1}{\p{2\pi i}^2} \int_{\partial B\p{z_0, 2}} \int_{\partial B\p{z_0, 3}} \frac{F\p{\zeta, w}}{\p{\zeta - z}\p{w - z}} \,\diff{w} \,\diff\zeta \\ &= \frac{1}{\p{2\pi i}^2} \int_{\partial B\p{z_0, 2}} \int_{\partial B\p{z_0, 3}} \frac{F\p{\zeta, w}}{\zeta - w}\p{\frac{1}{w - z} - \frac{1}{\zeta - z}} \,\diff{w} \,\diff\zeta \\ &= \frac{1}{\p{2\pi i}^2} \int_{\partial B\p{z_0, 2}} \int_{\partial B\p{z_0, 3}} \frac{F\p{\zeta, w}}{\zeta - w}\sum_{n=0}^\infty \br{\frac{1}{w}\p{\frac{z - z_0}{w - z_0}}^n - \frac{1}{\zeta - z_0}\p{\frac{z - z_0}{\zeta - z_0}}^n} \,\diff{w} \,\diff\zeta \\ &= \frac{1}{\p{2\pi i}^2} \int_{\partial B\p{z_0, 2}} \int_{\partial B\p{z_0, 3}} \frac{F\p{\zeta, w}}{\zeta - w}\sum_{n=0}^\infty \p{\frac{1}{\p{w - z_0}^{n+1}} - \frac{1}{\p{\zeta - z_0}^{n+1}}} \p{z - z_0}^n \,\diff{w} \,\diff\zeta. \end{aligned}

If we can justify switching the sum and integral, then we are done. Observe that the sum converges uniformly, since wz0,ζz01\abs{w - z_0}, \abs{\zeta - z_0} \geq 1. Also, ζw1\abs{\zeta - w} \geq 1, by construction, and on B(z0,3)\partial B\p{z_0, 3}, we see that wF(ζ,w)w \mapsto F\p{\zeta, w} is bounded, so we may apply Fubini's theorem to swap the inner sum and integral. By the same argument, since ζF(ζ,w)\zeta \mapsto F\p{\zeta, w} is a continuous hence bounded function on B(z0,2)\partial B\p{z_0, 2}, so we may swap again. Thus,

F(z,z)=n=0(1(2πi)2B(z0,2)B(z0,3)F(ζ,w)ζw(1(wz0)n+11(ζz0)n+1)dwdζ)(zz0)n,F\p{z, z} = \sum_{n=0}^\infty \p{\frac{1}{\p{2\pi i}^2} \int_{\partial B\p{z_0, 2}} \int_{\partial B\p{z_0, 3}} \frac{F\p{\zeta, w}}{\zeta - w} \p{\frac{1}{\p{w - z_0}^{n+1}} - \frac{1}{\p{\zeta - z_0}^{n+1}}} \,\diff{w} \,\diff\zeta} \p{z - z_0}^n,

so FF is holomorphic.