Spring 2018 - Problem 6

measure theory

Let T\T denote the unit circle in the complex plane and let P(T)\mathcal{P}\p{\T} denote the space of Borel probability measures on T\T and P(T×T)\mathcal{P}\p{\T \times \T} denote the space of Borel probability measures on T×T\T \times \T. Fix μ,νP(T)\mu, \nu \in \mathcal{P}\p{\T} and define

M={γP(T×T)|T×Tf(x)g(y)dγ(x,y)=(Tf(x)dμ(x))(Tg(y)dμ(y)) for all f,gC(T)}.\mathcal{M} = \set{\gamma \in \mathcal{P}\p{\T \times \T} \st \iint_{\T \times \T} f\p{x}g\p{y} \,\diff\gamma\p{x, y} = \p{\int_\T f\p{x} \,\diff\mu\p{x}}\p{\int_\T g\p{y} \,\diff\mu\p{y}} \text{ for all } f, g \in C\p{\T}}.

Show that F ⁣:MR\func{F}{\mathcal{M}}{\R} defined by

F(γ)=T×Tsin2(θφ2)dγ(eiθ,eiφ)F\p{\gamma} = \iint_{\T \times \T} \sin^2\p{\frac{\theta - \phi}{2}} \,\diff\gamma\p{e^{i\theta}, e^{i\phi}}

achieves its minimum on M\mathcal{M}.

Solution.

Observe that M={μν}\mathcal{M} = \set{\mu \otimes \nu}. Indeed, given γM\gamma \in \mathcal{M}, we see that γ=μν\gamma = \mu \otimes \nu (viewed as elements of (C(T×T))\p{C\p{\T \times \T}}^*) agree on the set

A={k=1nckf(x)g(y)|nN, ckR, f,gC(T)}.A = \set{\sum_{k=1}^n c_k f\p{x} g\p{y} \st n \in \N,\ c_k \in \R,\ f, g \in C\p{\T}}.

By Stone-Weierstrass, this set is dense in C(T×T)C\p{\T \times \T}, and so γ=μν\gamma = \mu \otimes \nu everywhere in (C(T×T))\p{C\p{\T \times \T}}^*, so by Riesz representation, it follows that γ=μν\gamma = \mu \otimes \nu, so M\mathcal{M} is a singleton. Thus, because

sin2(θφ2)1L1(μν),\abs{\sin^2\p{\frac{\theta - \phi}{2}}} \leq 1 \in L^1\p{\mu \otimes \nu},

it follows that FF trivially attains its minimum on M\mathcal{M}.