Spring 2018 - Problem 4

Lebesgue differentiation theorem, Lp spaces
  1. Fix 1<p<1 < p < \infty. Show that

    f[Mf](x,y)=supr>0,ρ>014rρrrρρf(x+h,y+)dhdf \mapsto \br{Mf}\p{x, y} = \sup_{r > 0, \rho > 0} \frac{1}{4r\rho} \int_{-r}^r \int_{-\rho}^\rho f\p{x + h, y + \ell} \,\diff{h} \,\diff{\ell}

    is bounded on Lp(R2)L^p\p{\R^2}.

  2. Show that

    [Arf](x,y)=14r3rrr2r2f(x+h,y+)dhd\br{A_rf}\p{x, y} = \frac{1}{4r^3} \int_{-r}^r \int_{-r^2}^{r^2} f\p{x + h, y + \ell} \,\diff{h} \,\diff\ell

    converges to ff a.e. in the plane as r0r \to 0.

Solution.
  1. Let

    Hf(x)=supr>012rxrx+rf(y)dyHf\p{x} = \sup_{r > 0} \frac{1}{2r} \int_{x-r}^{x+r} \abs{f\p{y}} \,\diff{y}

    be the Hardy-Littlewood maximal function. Observe that HfLfL\norm{Hf}_{L^\infty} \leq \norm{f}_{L^\infty}, so by sublinearity,

    m({Hf>α})m({Hfχ{f>α2}>α2})+m({Hfχ{fα2}>α2})=m({Hfχ{f>α2}>α2}).\begin{aligned} m\p{\set{Hf > \alpha}} &\leq m\p{\set{Hf\chi_{\set{\abs{f} > \frac{\alpha}{2}}} > \frac{\alpha}{2}}} + m\p{\set{Hf\chi_{\set{\abs{f} \leq \frac{\alpha}{2}}} > \frac{\alpha}{2}}} \\ &= m\p{\set{Hf\chi_{\set{\abs{f} > \frac{\alpha}{2}}} > \frac{\alpha}{2}}}. \end{aligned}

    Then by the Hardy-Littlewood maximal inequality,

    HfLpp=0pαp1m({Hf>α})dα0pαp1m({Hfχ{f>α2}>α2})dα0Cpαp2{f(x)>α2}f(x)dxdα=CpRf(x)02f(x)αp2dαdx(Fubini-Tonelli)=C2p1pp1Rf(x)pdx=C2p1pp1fLpp.\begin{aligned} \norm{Hf}_{L^p}^p &= \int_0^\infty p\alpha^{p-1} m\p{\set{Hf > \alpha}} \,\diff\alpha \\ &\leq \int_0^\infty p\alpha^{p-1} m\p{\set{Hf\chi_{\set{\abs{f} > \frac{\alpha}{2}}} > \frac{\alpha}{2}}} \,\diff\alpha \\ &\leq \int_0^\infty Cp\alpha^{p-2} \int_{\set{\abs{f\p{x}} > \frac{\alpha}{2}}} \abs{f\p{x}} \,\diff{x} \,\diff\alpha \\ &= Cp \int_\R \abs{f\p{x}} \int_0^{2\abs{f\p{x}}} \alpha^{p-2} \,\diff\alpha \,\diff{x} && \p{\text{Fubini-Tonelli}} \\ &= \frac{C2^{p-1}p}{p - 1} \int_\R \abs{f\p{x}}^p \,\diff{x} \\ &= \frac{C2^{p-1}p}{p - 1} \norm{f}_{L^p}^p. \end{aligned}

    for some constant C>0C > 0. We now apply it twice: observe that by Fubini-Tonelli,

    yfyLp(R)p=RfyLppdy=R(Rf(x,y)pdx)dy=fLp(R2)p,\norm{y \mapsto \norm{f_y}}_{L^p\p{\R}}^p = \int_\R \norm{f_y}_{L^p}^p \,\diff{y} = \int_\R \p{\int_\R \abs{f\p{x, y}}^p \,\diff{x}} \,\diff{y} = \norm{f}_{L^p\p{\R^2}}^p,

    and so

    14rρrrρρf(x+h,y+)dhd12rrr(12ρρρf(x+h,y+)dh)d12rrrHfy+(x)dH(Hfy(x))(y)    [Mf](x,y)H(Hfy(x))(y).\begin{aligned} \abs{\frac{1}{4r\rho} \int_{-r}^r \int_{-\rho}^\rho f\p{x + h, y + \ell} \,\diff{h} \,\diff{\ell}} &\leq \frac{1}{2r} \int_{-r}^r \p{\frac{1}{2\rho} \int_{-\rho}^\rho \abs{f\p{x + h, y + \ell}} \,\diff{h}} \,\diff\ell \\ &\leq \frac{1}{2r} \int_{-r}^r Hf_{y+\ell}\p{x} \,\diff\ell \\ &\leq H\p{Hf_y\p{x}}\p{y} \\ \implies \abs{\br{Mf}\p{x, y}} &\leq H\p{Hf_y\p{x}}\p{y}. \end{aligned}

    Hence, if we replace CC with C2p1pp1\frac{C2^{p-1}p}{p - 1}, we have

    MfLp(R2)p(x,y)H(Hfy(x))(y)Lp(R2)=xyH(Hfy(x))(y)Lp(R)Lp(R)CxyHfy(x)Lp(R)Lp(R)C2xyfy(x)Lp(R)Lp(R)=C2fLp(R2).\begin{aligned} \norm{Mf}_{L^p\p{\R^2}}^p &\leq \norm{\p{x, y} \mapsto H\p{Hf_y\p{x}}\p{y}}_{L^p\p{\R^2}} \\ &= \norm{x \mapsto \norm{y \mapsto H\p{Hf_y\p{x}}\p{y}}_{L^p\p{\R}}}_{L^p\p{\R}} \\ &\leq C\norm{x \mapsto \norm{y \mapsto Hf_y\p{x}}_{L^p\p{\R}}}_{L^p\p{\R}} \\ &\leq C^2 \norm{x \mapsto \norm{y \mapsto f_y\p{x}}_{L^p\p{\R}}}_{L^p\p{\R}} \\ &= C^2 \norm{f}_{L^p\p{\R^2}}. \end{aligned}
  2. Let

    [Hrf](x,y)=14r3rrr2r2f(x+h,y+)dhd,\br{H_rf}\p{x, y} = \frac{1}{4r^3} \int_{-r}^r \int_{-r^2}^{r^2} \abs{f\p{x + h, y + \ell}} \,\diff{h} \,\diff{\ell},

    which we showed via the previous calculation that HrH_r is strong type (p,p)\p{p, p}. As in the proof of the Lebesgue differentiation theorem, let α>0\alpha > 0. First, observe that by Chebyshev's inequality,

    m({(x,y)R2|[Hrf](x,y)>α})CαHrfLpCαfLpm\p{\set{\p{x, y} \in \R^2 \st \br{H_rf}\p{x, y} > \alpha}} \leq \frac{C}{\alpha} \norm{H_rf}_{L^p} \leq \frac{C}{\alpha} \norm{f}_{L^p}

    for any fLp(R)f \in L^p\p{\R}. Notice that the result is certainly true for continuous functions, so let ε>0\epsilon > 0 and pick gg continuous and compactly supported such that fgLp<ε\norm{f - g}_{L^p} < \epsilon. Then

    [Arf](x,y)f(x,y)[Ar(fg)](x,y)+[Arg](x,y)g(x,y)+f(x,y)g(x,y)    lim supr0[Arf](x,y)f(x,y)lim supr0[Ar(fg)](x,y)+f(x,y)g(x,y).\begin{gathered} \abs{\br{A_rf}\p{x, y} - f\p{x, y}} \leq \abs{\br{A_r\p{f - g}}\p{x, y}} + \abs{\br{A_rg}\p{x, y} - g\p{x, y}} + \abs{f\p{x, y} - g\p{x, y}} \\ \implies \limsup_{r\to0} \,\abs{\br{A_rf}\p{x, y} - f\p{x, y}} \leq \limsup_{r\to0} \,\abs{\br{A_r\p{f - g}}\p{x, y}} + \abs{f\p{x, y} - g\p{x, y}}. \end{gathered}

    Hence,

    m({lim supr0[Arf](x,y)f(x,y)>α})m({lim supr0[Ar(fg)](x,y)>α2})+m({f(x,y)g(x,y)>α2})m({[Hr(fg)(x,y)>α2]})+m({f(x,y)g(x,y)>α2})2CαfgLp+2αfgLp(2C+2α)ε.\begin{aligned} m\p{\set{\limsup_{r\to0} \,\abs{\br{A_rf}\p{x, y} - f\p{x, y}} > \alpha}} &\leq m\p{\set{\limsup_{r\to0} \,\abs{\br{A_r\p{f - g}}\p{x, y}} > \frac{\alpha}{2}}} + m\p{\set{\abs{f\p{x, y} - g\p{x, y}} > \frac{\alpha}{2}}} \\ &\leq m\p{\set{\br{H_r\p{f - g}\p{x, y} > \frac{\alpha}{2}}}} + m\p{\set{\abs{f\p{x, y} - g\p{x, y}} > \frac{\alpha}{2}}} \\ &\leq \frac{2C}{\alpha} \norm{f - g}_{L^p} + \frac{2}{\alpha} \norm{f - g}_{L^p} \\ &\leq \p{\frac{2C + 2}{\alpha}} \epsilon. \end{aligned}

    Thus, the set where the m({lim supr0[Arf](x,y)f(x,y)>α})=0m\p{\set{\limsup_{r\to0} \,\abs{\br{A_rf}\p{x, y} - f\p{x, y}} > \alpha}} = 0 for all α>0\alpha > 0, so [Arf]f\br{A_rf} \to f for almost every (x,y)R2\p{x, y} \in \R^2.